
User and System Identifier
Joop Ringelberg 14-04-20 Version: 1

Introduction

sys:MySystem and sys:Me are replaced by unique ‘private’ names, like all other indexed

names, but we handle them a little different. This is because we have to generate a

unique name for a particular PDR installation before the functions are executed that

replace all other indexed names. This text explains why and how. It also explains the

relation between these two, the user database names and some facilities for testing.

The origin of the system identifier

When InPlace is first fired up on a computer, Couchdb is supposed to be in PartyMode. The

user, having no account, enters a username and a password of her choice. The PDR then

calls the function setupCouchdbForFirstUser. This function will, eventually, generate a

guid that will be the base of the system identifier. However, for now, during

development, for easy testing, we just use the user identifier that the user just typed in.

In this text we call it the systemIdentifier.

We also have a function setupCouchdbForAnotherUser. Like for the first user, it will in

the end generate a guid but now just uses the user name provided to one of its

parameters.

Persistence of system identifier, user name and

password

We put the user name and password and the system identifier into a data structure

CouchdbUser:

 newtype CouchdbUser = CouchdbUser UserInfo

 type UserInfo =

 { userName :: UserName

 , couchdbPassword :: String

 , couchdbHost :: String

 , couchdbPort :: Int

 , systemIdentifier :: String

 , _rev :: Maybe String

 }

2

This structure is serialised and stored as a file in Couchdb in the database localusers. On

logging in, the PDR fetches the document with the name entered by the user1 and checks

the password. If all works out, the PDR starts up with the above data structure as part of

PerspectivesState.

System identifier as base name

From the systemIdentifier we construct replacements for both sys:MySystem and sys:Me:

Purescript function Indexed name Private name

getMySystem sys:MySystem model:User$<systemIdentifier>

getUserIdentifier sys:Me model:User$<systemIdentifier>$User

These values are constructed by the two functions given in the first column. They take the

value of systemIdentifier out of PerspectivesState.

User database names are derived from systemIdentifier, too:

• <systemIdentifier>_instances

• <systemIdentifier>_models;

• <systemIdentifier>_post.

These databases are constructed by the functions setupCouchdbForFirstUser and

setupCouchdbForAnotherUser.

Putting the systemIdentifier in PerspectivesState

When the PDR fires up, it constructs a PerspectivesState that holds, among others, the

systemIdentifier (as we’ve shown in Persistence of system identifier, user name and

password). It then calls runPerspectivesWithState on that state and some value in

MonadPerspectives to compute.

However, there is another function, runPerspectives, that takes, among others an

argument bound to its parameter systemId, that constructs an instance of

PerspectivesState on the fly and then computes a value in MonadPerspectives. So while

computing that value, for systemIdentifier we have that argument. This means that

during that computation

• Models and instances and transactions are taken from and written into a specific

set of user databases, based on that argument value;

• sys:Me and sys:MySystem are replaced by values based on that argument value.

1 It uses the special account authenticator to do so. The password for this account is kept in the

source code. This is not particularly safe, but remember the database resides on the user’s own
machine.

3

This is very useful for testing. We can run one computation for one user, then another for

another user, all in the same test code!

Testing

Accounts

For testing purposes, we have three local user accounts whose names are respectively

“test”, “cor” and “joop”. Their system identifier equals their user names. We have for

each three user databases and we do not remove them between tests. However, tests

may/must clear them out.

Running a test for an account

We can run a test for a specific user by applying the functions runP (for “test”), runPCor

(for “cor”) and runPJoop (for “joop”).

test "something" (runP $do

 something)

Providing a required model and instances

A test that needs instances of model:PerspectivesSystem and its User role, should apply

the function withModel. For example:

test "something" (runP $ withModel (DomeinFileId “model:System”) do

 something)

will compute something for user “test”, with instances taken from test_models, in the

presence of the types of model:System. withModel clears both the instances database

and removes the model (but, alas, not its dependencies!).

Loading a CRL file

Use the function loadAndCacheCrlFile to create instances from file and put them in

cache (but not in Couchdb). This function replaces all (expanded) indexed names in the

source code prior to parsing it.

To store the instances in Couchdb, use loadAndSaveCrlFile. However, note that this

function also updates queries and triggers bot rules.

	Introduction
	The origin of the system identifier
	Persistence of system identifier, user name and password
	System identifier as base name
	Putting the systemIdentifier in PerspectivesState
	Testing
	Accounts
	Running a test for an account
	Providing a required model and instances
	Loading a CRL file

