
Unlinked Roles
Joop Ringelberg 05-01-21 Version: 1

Introduction

Role- and context instances are represented in the PDR by mutually referring data

structures. A reference consists of an identifier that we use to retrieve the data structure

from the database.

For a non-functional role, a context holds an array of references: one for each of its

instances. The number of instances may grow very large for some types of roles. This may

make the memory cost of caching their context prohibitive.

Retrieve with a query instead of by identifier

We offer the modeller a ‘compiler instruction’ to use with a role definition: the keyword

unlinked. It can be used as follows:

 context: Chats (not mandatory, not functional, unlinked) filledBy: Chat

(taken from model:SimpleChat).

The role Chats will not figure in instances of its context, ChatApp. Instead, when query

evaluation proceeds with the step Chats, as in:

user: Chatter (mandatory, functional) filledBy: sys:PerspectivesSystem$User

 perspective on: Chats >> binding >> context >> Initiator: Create,

Bind, Change

it will perform a query on the database for all role instances of the type

model:SimpleChat$ChatApp$Chats, whose context is the context the query tries to get

the Chats from.

Semantically, there is no difference between linked roles (the default) and unlinked roles.

Reversing over an unlinked role

Interestingly, we outfit the role instances with a direct reference to their context – just

like instances of linked roles. This means that when the query evaluator encounters a

context step, it handles both cases in the same way.

Deleting unlinked role instances

On deleting an unlinked role instance, we remove it from the database, just like with an

instance of a linked role. However, there is no need to remove its reference from its

context.

	Introduction
	Retrieve with a query instead of by identifier
	Reversing over an unlinked role
	Deleting unlinked role instances

