
Understanding a Perspective model 
text 
Joop Ringelberg 19-05-21 Version: 2 

Types and scopes 

With this text we explain how to understand a Perspective model source text. We do not 

give grammar definitions here, but focus on the meaning of the various expressions 

instead. 

First of all, indentation matters. A model text consists of blocks of lines with equal 

distance from the left margin. Such blocks can be nested arbitrarily deep. We will call 

such a block a lexical scope, or just scope. 

Second, a model is a number of type definitions (at least one: the domain). A type 

definition consists of a type declaration line, followed by an indented block that gives the 

type’s details (we might call this block the body of the type definition text). A type 

declaration can be easily recognised because it must be preceded by a keyword: 

• a context keyword: domain, case, party, activity; 

• a role keyword: user, thing, context, external; 

• or one of the keywords property, view or state. 

Any point in a model text (a lexical position) will, of necessity, be enclosed in some scope 

(except for the domain type declaration line). As scopes can be nested, any given point 

might be inside an arbitrary number of scopes, each enclosing the other until we arrive at 

the domain’s body. Some, but not all, of these scopes will be type definition bodies. Now 

we will say that all these definitions are visible from that lexical position. The first visible 

context definition that we encounter on ‘moving upward’, is the current context. 

Perspectives 

A perspective is not a type. A perspective governs what a particular end user, in some user 

role in a context, can perceive of a role in that context and how he can affect that role. 

We call the role that a perspective is about, the object role while the user role that the 

perspective is for is the subject role. A perspective must be built of three type of parts: 

• the role verbs that the subject role may apply to the object role, such as Create 

and Delete; 

• the property verbs that the subject role may apply to given properties of the 

object role, such as DeleteProperty and SetPropertyValue; 



2 

• the actions that the subject role may execute. An action is a sequence of 

assignment statements1 executed in order, bundled under a name.  

Here is an example: 

domain Parties 

 case Party 

  thing Wishes 

  user Guest 

   perspective on Wishes 

    all roleverbs 

User Guest can apply all role verbs to the Wishes role, in the Party context. In order to 

prepare ourselves for more involved texts whose meaning may not be immediately clear, 

lets dissect what we have.  

We need two concepts: the current subject and the current object. We’ve already met 

the current context, and these two new concepts are just like it. Let’s pick the line all 

roleverbs as our lexical position. We must be able to establish for what user role this line 

is meant (as part of its perspective). Moving upward through the blocks, we encounter the 

type declaration line user Guest. Here is a rule: each user role type definition sets the 

current subject. So we now know all roleverbs is meant for Guest. 

How about the current object? Well, a perspective on line sets the current object. So, 

putting it all together, for our lexical position all roleverbs we have 

• Party as the current context 

• Guest as the current subject 

• Wishes as the current object. 

Now it happens to be that a role definition that is not a user role, sets the current object, 

too. And we also have perspective of, setting the current subject. So the following 

model says exactly the same as our previous example: 

domain Parties 

 case Party 

  thing Wishes 

   perspective of Guest 

    all roleverbs 

  user Guest 

Recapitulating: the current object is in scope in: 

• the block following a perspective on; 

 
1 Assignment statements are not explained here. See the text Assignment. However, an assignment 
statement either changes a context by creating or deleting a role instance, or changes a role by 
filling it with a role (or remove that filler) or by changing the values of its properties. 



3 

• the body of a role definition that is not a user role 

The current subject is in scope in: 

• the block following a perspective of; 

• the body of a role definition that is a user role; idem 

• the block of assignments following do for, defining an action (we’ll see examples 

below). 

In each of these cases, exactly one user role type is specified. Hence the current subject 

is always a single named type (but notice this may be a calculated role type that defines 

the disjunction of two types). 

Notifications and state 

Often, we want to make sure that the users of an application take note of some changes.  

In our party example, it is important for the person throwing the party to note that his 

invited guests accept (or reject) the invitation. To make sure that some changes do not go 

unnoticed, we introduce the mechanism of notification. 

A notification is something that draws the end users’ attention. Usually, a notification also 

consists of some message (like a line of text). Crucially, a notification should happen 

under specific circumstances. In Perspectives, we model this with state transitions.  

A context can be in a specific state, and so can a role. This state must be defined in terms 

of its roles (for a context), while the state of a role is defined in terms of its filling and/or 

property values. In Perspectives we can write an expression with some truth (Boolean) 

value to define a state2. Here is an example: 

domain Parties 

 case Party 

  user Guest 

   property FirstName (String) 

   property Accept (Boolean) 

   state Accepted = Accept 

    on entry 

     notify Organizer 

      “{FirstName} has accepted.” 

  user Organizer 

The state declaration line shows that role state Accepted is simply determined by the 

value of the Boolean property Accept. As soon as the end user playing the Guest role sets 

 
2 We do not explain expressions in this text in detail. In short, an expression can be some 
comparison whose left and right terms trace paths through the web of contexts, roles and 
properties. 



4 

that property to true (e.g. by ticking a box in the invitation screen), the Guest role enters 

the state Accepted, or transitions to that state.  

But what was the previous state of Guest? By default, each context or role is in its resting, 

or Root, state. So by ticking the box, role Guest transitions from Root state to Accepted 

state. 

Let’s do some lexical analysis. notify Organizer is our lexical position of interest. What 

is the state transition it applies to? Following the nested scopes upward, we encounter an 

on entry line. This specifies a transition type (there is only one alternative: on exit). 

But entry of what state? Continuing our exploration of nested scopes upward, we 

encounter the state type declaration line for Accepted. Here’s another rule: in the body of 

a state type definition, that state is the current state. This completes our quest: notify 

Organizer applies to entering state Accepted. 

A little more on the nature of notifications. In the example above, we might be tempted 

to notify the Organizer with the text “I will come” rather than “X has accepted.”. After 

all, it is the Guest who accepts and this could be his personal message to the Organizer.  

But a notification is not a message from one user to another. It is more like an act of 

observation by the notified user. The difference is subtle: users should be observant and 

note what happens to contexts they play a role in. The notification mechanism merely aids 

them in actually noting that some changes have occurred. It is not a conversation 

mechanism; we have other means for that3. 

More on states transitions; automatic effects 

Life is full of repetitious tasks. Automation can take care of them and Perspectives is no 

exception. But when we make something happen automatically using Perspectives, it will 

always be delegated by some user role. Here we mean by ‘something happens’ that the 

information recorded in terms of contexts, roles and their properties, changes; in other 

words, that the state (of some context or role) changes.  

So to make this very clear: state changes are always traceable to some end user. 

Let’s consider a birthday party. On entering the Root state of the Party (which happens as 

we create it), we’ll create a role PartyPig (to be filled later by a person). This is the 

model: 

domain Parties 

 case MyParties 

  user Organizer 

   perspective on Parties 

    only CreateAndFill 

  context Parties filledBy BirthDayParty 

 
3 Not yet at the time of writing, but in a future release. 



5 

   on entry 

    do for Organizer 

     createRole PartyPig in object >> binding >> context 

 case BirthDayParty 

  user PartyPig 

The first thing to note is that all birthday parties (all instances of BirthDayParty) are 

embedded in the context MyParties. The context role Parties holds them. The user role 

Organiser can create a new one and fill it automatically with an empty embedded context 

(an instance of BirthDayParty) as well, due to the role verb CreateAndFill4.  

But this context is created empty and we always want to have an instance of the PartyPig 

role in it. This is where the on entry comes in. We then automatically create a role 

PartyPig, an automated task delegated by the Organizer user role. 

You will notice the clause in object >> binding >> context. It traces a path from the 

new Parties role instance (the current object5) to the new embedded BirthDayParty 

context that it is filled with. This is where we create the new instance of the role 

PartyPig. 

We might have written this model like this: 

domain Parties 

 case MyParties 

  user Organizer 

   perspective on Parties 

    only CreateAndFill 

    on entry of object state 

     createRole PartyPig in object >> binding >> context 

  context Parties filledBy BirthDayParty 

 case BirthDayParty 

  user PartyPig 

There is no difference in meaning; just in the way we express it. 

By now you will have inferred that the line do for Organizer sets the current subject to 

Organiser. But why do we write on entry of object state and not just on entry, like 

we did in the first formulation? 

This has to do with the notion of current state. We’ve seen that in the body of a state 

definition, that state is the current state. But what is the state outside of such scopes?  

 
4 This is the only way we can create contexts. Thus, each context is always embedded through a 
context role in some other context. The role verb CreateAndFill governs this. 
5 Notice that the current object as we’ve defined it above is actually available as the value of the 
variable object in expressions. As a matter of fact, we could have left it out of this expression. 

Just binding >> context would do, as the expression is applied to the Parties role anyway. 

More on that below. 



6 

By construction, in the scope of a context definition, the current state is the Root state of 

that context. Similarly, in the scope of a role definition, the current state is the Root 

state of that role. Finally, we also have in state expressions that, unsurprisingly, set the 

current state. 

So in our second formulation of the model, the current state in the lexical position at the 

start of the line on entry of object state is the Root state of the Organizer role. But 

we obviously do not want the automatic effect to take place on creating an instance of 

the Organizer role – it should happen when we create an instance of the Parties role! This 

is what on entry of object state does for us: it sets the current state that the on 

entry applies to, to the Root state of the current object. And this happens to be Parties 

(it is the first enclosing scope that sets the current object). 

Looking back to the first formulation, we can understand why on entry works. The 

current state at this lexical position is given by the declaration context Parties – and 

thus is the Root state of Parties. 

There are a lot of ways to set the current state. Summing up: 

1. A state definition sets the current state for its body6. 

2. A context definition sets the current state to the Root state of that context. 

3. A role definition sets the current state to the Root state of that role. 

4. The in state X clause sets the current state to its substate X. When of and a 

state type (object, subject, context) is specified, the current state is set to the 

substate X of the current object, current subject or current context respectively. 

5. The on entry and on exit clauses do by themselves not change the current state, 

but specify a state transition for the current state. When of and a state name is 

specified, the state transition is for the substate of the current state.  

Alternatively, you may think that state name changes the current state for the 

lexical position of on entry X and on exit X to substate X of the current state. 

6. The on entry and on exit clauses can be augmented with three parts: 

a. of object state, optionally extended with a state name. It sets the 

current state to the Root state (or the named state) of the current object; 

b. of subject state, idem, for the current subject; 

c. of context state, idem, for the current context. 

These definitions and clauses give us full control of specifying the conditions under which 

something may happen automatically, in various ways. Some examples: 

 on entry 

 on entry of Published 

 on entry of object state 

 on entry of object state Published 

 
6 In all rules we list below, ‘setting the state’ holds for the lexical scope following the declaration 
or clause lines. 



7 

 in state Published 

 in state Published of object 

 in state Published of context 

Perspective and state 

A user role might have different perspectives in various states. Let’s revisit our first 

example: 

domain Parties 

 case Party 

  thing Wishes 

  user Guest 

   perspective on Wishes 

    all roleverbs 

What is the current state in the lexical position perspective on Wishes? Its narrowest 

enclosing state giving scope is the body of the user Guest definition, so it is the Root 

state of Guest. The implication is that this perspective on Wishes is always valid. 

Why always? Would Guest not lose the perspective on the very first state transition? No, 

because whatever state Guest would transition to, it must be a substate of its Root state. 

This means that Guest then would be in both the substate and the Root state. In other 

words, perspectives for the Root state are always valid. 

In contrast, in this model: 

domain Parties 

 case Party 

  thing Wishes 

  user Guest 

   property Accept (Boolean) 

   state Accepted = Accept 

    perspective on Wishes 

     all roleverbs 

Guest would only acquire a perspective on Wishes in state Accepted. That is, the state 

Accepted of the role Guest. 

We might call this subject state: the perspective depends on the state of the subject. It is 

also possible to define a perspective dependent on object state: 

domain Parties 

 case Party 

  thing Wishes 

   property Finished (Boolean) 

   state Published = Finished 

  user Guest 



8 

   in object state Published 

    perspective on Wishes 

     all roleverbs 

Now Guest can only see the Wishes when they are published. The perspective no longer 

depends on the state of Guest. 

As of yet, we cannot make a perspective dependent on both object and subject state. 

Obviously, we can also define a perspective to be valid in some context state. That means, 

in this case, that we can actually make the perspective depend on both object and subject 

state: 

domain Parties 

 case Party 

  thing Wishes (Functional) 

   property Finished (Boolean) 

   state Published = Finished 

  user Guest 

   property Accept (Boolean) 

   state Accepted = Accept 

    state WishesPublished = context >> Wishes >> Finished 

     perspective on Wishes 

      all roleverbs 

Subject role state Accepted now has a substate called WishesPublished. Its definition 

depends on the same property Finished of role Wishes as the Published state of Wishes 

itself (but we need a path via the context to reach it). So, whenever Wishes transitions to 

Published, a Guest user role instance in state Accepted will transition to its substate 

WishesPublished and thus be in both states at the same time. So we succeed in mimicking 

the effect of making the perspective depend on both object and subject state. 

This works, however, only because Wishes is a functional role (you’ll notice the Functional 

qualifier in parentheses on the role declaration line). Obviously, Guest is not a functional 

role and this means we cannot mirror this solution by reaching out from the role Wishes: 

domain Parties 

 case Party 

  thing Wishes (Functional) 

   property Finished (Boolean) 

   state Published = Finished 

    state GuestAccepted = context >> Guest >> Accept 

     perspective for Guest 

      all roleverbs 

  user Guest 

   property Accept (Boolean) 



9 

   state Accepted = Accept 

Look at the declaration of GuestAccepted: exactly what Guest are we talking about? The 

expression context >> Guest >> Accept will return as many Boolean values as there are 

Guests. As a matter of fact, the Perspectives compiler will reject this state definition 

because the expression is not functional (can result in more than one value). 

Summing up: only as long as at least one of subject and object are functional, can we 

mimic the effect of making a perspective depend on both object and subject state. 

About expressions and variables 

In the scope of an on entry or on exit clause we can write a do or a notify clause. In 

the do we write assignment statements that contain expressions; in the notify we can 

embed expressions in the sentence we want to notify with. Finally, actions consist of 

assignments and therefore have expressions, too. 

An expression is like a function, applied to either a role instance or a context instance. 

Moreover, we may refer to the current object and current context in these expressions. 

So, for any given expression, we can ask ourselves the following questions: 

1. What is it applied to? 

2. What is the value of the object variable? 

3. What is the value of the currentcontext variable? 

The answers are dictated by the kind of state the expressions are in scope of. The 

difference is whether the current state of the lexical position of the expression is object 

state, context state or subject state. 

1. Expressions in a lexical position where the current state is context state, are 

applied to the current context. 

2. Expressions in a lexical position where the current state is object state, are applied 

to the current object. 

3. Expressions in a lexical position where the current state is subject state, are 

applied to the current subject. 

4. The above holds for the state conditions, too: context state condition is applied to 

the current context, an object state condition is applied to the current object, and 

the subject state condition is applied to the current subject. 

5. Expressions can always refer to the variable currentcontext. 

6. Expressions in object state can always refer to the variable object and it is always 

bound to exactly one role instance. 

7. Expressions in context state may refer to object only if the expression is also in 

the scope of a perspective on clause embedded within the context state 

definition. In that case, the variable can be bound to zero or more role instances. 



10 

8. Likewise, expressions in subject state may refer to object only if the expression is 

also in the scope of a perspective on clause embedded within the subject state 

definition. In that case, the variable can be bound to zero or more role instances. 

Note the similarities and differences between expressions in subject- and object state. In 

both cases, expressions are applied to a single role instance. For object state, object is 

bound to that role instance, too. For subject state, object is bound to a set of role 

instances and the instance that the expressions are applied to is not in that set! 

In general, one must be careful when using subject state. Make sure that assignments are 

applied to the right roles! 


	Types and scopes
	Perspectives
	Notifications and state
	More on states transitions; automatic effects
	Perspective and state
	About expressions and variables

