
Type and resource identifiers
Joop Ringelberg 25-08-21, 20-07-22 Version: 2

Introduction

Dealing with a Perspectives model and instances involves many things that must be

identified, for example:

• Models

• Types (contexts, roles)

• Instances (contexts, roles)

• Storage locations (stores)

The Perspectives Distributed Runtime must be able, too, to find all physical resources that

represent these models, types, instances and stores. In this text I explain how we build

identifiers, when identifiers are locations and how we find resources whose identification

is not a location.

Furthermore, we have to deal with the fact that things change. Models evolve, meaning

that type definitions may change and sometimes even their names might change. The

physical location of a store may change, too. This of course is complicated because the

Perspectives Universe is full of things that refer to each other – by identifier. Change

introduces the concept of versioning.

Finally, there is the dimension of context of usage in which an identifier must, well,

identify. For some identifiers we can firmly establish that they will never leave a

particular context of use: this holds for the identifier of a type in a model, for example.

Others, however, may be used worldwide and should be globally unique.

The text does not begin with a full, final definition of the shape of identifiers but works

towards them gradually, to build understanding of the parts and their function.

Some definitions

A model is a collection of types.

A namespace is an identifier, used to qualify types in a collection. Hence a model

identifier is a namespace, but so is a context type identifier, for its roles.

A model text is a readable text file that defines a model. The PDR can transform it into a

domeinfile.

A domeinfile is a resource (a json file) that holds the types in a model in a form that is

used without modification by the PDR to reflect on types.

An instance of a context or role is represented by a resource (json file).

2

A store holds a collection of resources. Perspectives distinguishes domeinfile stores from

instance stores.

A resource is a file.

On Uniform Resource Identifiers

We make use of the definitions given in rfc3986, Uniform Resource Identifier (URI):

Generic Syntax. Briefly: a URI consists of a scheme name, separated by a colon from an

identifier that is constructed according to the scheme. The http and https schemes are

well-known examples. The URIs defined by these schemes may be classified as locators

and hence can be called a Uniform Resource Locator (URL).

In the text below, we define three custom schemes for use in Perspectives.

Model identification

As stated above, a model is a collection of types. These types are organised hierarchically.

Context (types) contain context types and many others, role (types) contain property

types, etc. The hierarchy begins with a context type that has exactly the same identifier

as the model itself.

Models can be authored by anyone, all over the world. Models can also be used by anyone,

in any combination. This requires model identifiers to be globally unique. We do not

assume there will be a dedicated global register of models, hence an author cannot check

whether the model name he intends to use is unique by comparing it to existing models.

Instead, we need to provide a method for constructing a globally unique identifier.

Model names need to be communicable, too, for example because authors may want to

advertise their models. This precludes Globally Unique Identifiers (GUIDs) as defined in

rfc4122, A Universally Unique IDentifier (UUID) URN Namespace. These identifiers are

anything but human-readable, are very hard to remember and so do not lend them for

human communication.

Instead, we construct a custom URI scheme with the name model. rfc4122 states: Many

URI schemes include a hierarchical element for a naming authority so that governance of

the name space defined by the remainder of the URI is delegated to that authority. For

Perspectives, we will rely on the domain name system (DNS) as the authority that governs

name spaces for the internet, to ensure that model names are unique.

What identifiers can we construct under this scheme? Here is an example of a full URI:

model://perspectives.domains/System

model is the scheme name, separated with a colon (as prescribed) from the identifier

constructed under the scheme. The authority has to be delimited up front by two forward

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122

3

slashes and at the end by another forward slash1. In the model scheme, the authority itself

has no user- or port information. Following the authority is the local name for the model.

This name must start with an upper case character and must be unique in the domain

identified by the authority to make the URI unique.

Referring back to rfc3986 we define this syntax for the identifiers under the model

scheme:

Identifier = “//” reg-name “/” segment-nz-nc

A reg-name (registered name) intended for lookup in the DNS uses the syntax defined in

Section 3.5 of RFC1034 and Section 2.1 of RFC1123. A segment-nz-nc is a non-zero-length

segment without any colon ":". We add the constraint that it must start on an upper case

character.

Our model scheme has the advantage that it can be easily mapped onto a URL. As a matter

of fact, the identifiers constructed under the model scheme are a subset of those that can

be constructed under the https scheme (after substituting model by https). This means we

can locate a unique resource by means of a model identifier (more on this below).

Mapping URIs to URLs

We use a simple mapping from URI to URL. The authority (a reg-name) is used twice:

• Once as the authority of an URL in the https scheme;

• Once as part of a single step in the path of that URL. That single step is prefixed

with “models_” and all dots are replaced by underscores.

For example:

model://perspectives.domains/System

maps to:

https://perspectives.domains/models_perspectives_domains/System.json

Another example:

model://social.perspectives.domains/System

maps to:

https://perspectives.domains/models_social_perspectives_domains/System.json

In this way, we can have multiple hierarchical levels in our model namespaces, while

always mapping them to a location in a simple domain2.

1 In identifiers in the https scheme it may also be delimited by a question mark and various other
means. However, not so in the model scheme.
2 By which we mean: a top level domain, such as “com” and one subdomain (such as “google”).

https://tools.ietf.org/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc1034#section-3.5
https://datatracker.ietf.org/doc/html/rfc1123#section-2.1

4

Model stores

The Perspectives Distributed Runtime uses Pouchdb, that relies on the conventions of

Couchdb, to access resources. For our purposes, this means that a webserver must map

URLs of the form

https://perspectives.domains/models_social_perspectives_domains/System.json

to a database in a Couchdb installation (for example, a local installation). It is up to the

webserver to provide that mapping3. However, we suggest a simple scheme that just uses

the first step of the path as the database name. In this case, the json resource might be

retrieved from Couchdb using this string:

models_social_perspectives_domains/System.json. That is, we want the resource

System.json in the database models_social4.

Storage service providers

Suppose Perspect BV io would provide storage services to third parties, how would it

handle them? It could offer an author like me to use a subspace of their namespace

perspectives.domains, e.g. joopringelberg.perspectives.domains. I could then

create a model with this name:

model://joopringelberg.perspectives.domains/JoopsModel. This would map to the

following url:

https://perspectives.domains/models_joopringelberg_perspectives_domains/Joo

psModel.json. Their server would consequently look for the resource JoopsModel.json

in the database models_joopringelberg_perspectives_domains.

While perfectly usable, I’d have to rename my model if I wanted to move it to a different

provider, because I’d have tied my namespace to theirs (it is a subspace of theirs). That

would be very impractical.

It so happens that I own the domain name joopringelberg.nl. Suppose I created a model

named model://joopringelberg.nl/JoopsModel (notice the .nl part!), the PDR would

map it to:

 https://joopringelberg.nl/models_joopringelberg_nl/JoopsModel.json

My server does not host a Couchdb. However, I could redirect5 that to:

 https://perspectives.domains/models_joopringelberg_nl/JoopsModel.json

The perspectives.domains server would then request the resource JoopsModel.json from

the database models_joopringelberg_nl. All is well!

Can I have subspaces in my namespace? Yes:

3 But there are three restrictions. See the text Mapping Model Identifiers to Storage Locations.
4 According to its documentation, Couchdb allows forward slashes in its database names. In the
practice of version 3.1.0 this runs into problems. Hence we replace slashes by underscores.
5 See the last chapter on Cross Origin Resource Sharing.

https://perspect.it/models_joopringelberg_perspect_it/JoopsModel.json
https://perspect.it/models_joopringelberg_perspect_it/JoopsModel.json

5

 model://professional.joopringelberg.nl/JoopsModel

maps to

 https://joopringelberg.nl/models_professional_joopringelberg_nl/JoopsM

odel.json

and is forwarded to:

 https://perspectives.domains/models_professional_joopringelberg_nl/Joo

psModel.json

and leads the server to request the resource JoopsModel.json from the database

models_professional_joopringelberg_nl/joopringelberg/nl. Again, all is well.

The takeaway is that I could identify my models like this:

model://joopringelberg.nl/JoopsModel. Identifiers like this would remain valid as

long as I own the joopringelberg.nl domain, while I could switch storage providers at

will.

Model versions

We want to introduce model versioning in Perspectives using semantic versioning. Version

numbers defined according to this scheme are: MAJOR.MINOR.PATCH, where each of the

three parts are non-negative integers, and MUST NOT contain leading zeroes..

Version numbers will be appended to model identifiers in such a way that

• They are accepted as part of the segment-nz-nc;

• They are accepted as part of couchdb document names.

The semantic version number as such (consisting of numbers and “.”) can be part of both.

The “@” character can be, too, so we extend our definition of the model scheme to the

following production:

Identifier = “//” reg-name “/” segment-nz-nc “@” version core

version core = numeric_identifier "." numeric_identifier "." <numeric

identifier>

(see semantic versioning for the production of <numeric identifier>).

The versioned version of our previous example:

model://perspectives.domains/System

would be, for example:

model://perspectives.domains/System@1.0.0

and be mapped to the url

https://perspectives.domains/models_perspectives_domains/System@1.0.0

while the server would map this to the document System@1.0.0 in the database

models_perspectives_domains.

https://semver.org/
https://semver.org/

6

Pre-release versions

An author needs to maintain her model and this involves creating versions that are not

accessible to the public. Yet, with the mapping from model identifier to storage location,

we seem to have precluded this practice.

In order to restore it, we extend the semantic version with pre-release information. In

short, we require model storage providers to use that information in the mapping of URLs

to databases. See the text Mapping Model Identifiers to Storage Locations for details.

As a result, the identifier under the model scheme becomes:

Identifier = “//” reg-name “/” segment-nz-nc “@” version core [- <pre-

release>]

An optional pre-release string may be appended to the model name, separated from it by

a hyphen.

Model description: a public context

A domeinfile is a resource that holds the machine readable version of a model. However,

end users will want to inform themselves about a model before taking it into use. For this

we introduce the convention of a model description. The description of a model is itself a

resource, a context instance to be precise. Its type is defined in

model://perspectives.domains/System. The instance contains descriptive text, an

expanded name, etcetera.

A model description should be accessible to everyone, or at least to everyone subscribing

to a model repository (subscription may require a fee). A model description qualifies as a

public context: it’s type defines a Visitor role (see the text Universal Perspectives).

Crucially, a public context is the same for everybody6: each participant has the same

(consulting) perspective. This means that end users can share a single resource

representation.

By convention, we will have a model description instance in a location that can be derived

from the model URI. We have seen before that

model://perspectives.domains/System

maps to:

https://perspectives.domains/models_perspectives_domains/System.json

But we can also map it to:

https://perspectives.domains/cw_perspectives_domains/System.json

and at this location the model description instance is found.

6 Except for the model author.

https://perspect.it/models_perspect_it/System.json
https://perspect.it/cw_perspect_it/System.json

7

Public context stores

A server that manages a models database for the domain X should therefore also manage a

cw database for X, to store public instances in.

For example:

https://perspectives.domains/cw_perspectives_domains/System.json

looks for System.json (the ModelManifest for

model://perspectives.domains/System) in the database cw_perspectives_domains.

Obviously, like we saw above, it may forward these URLs to another domain, if that is

convenient.

DOCUMENT IS ACTUEEL TOT OP DIT PUNT.

Type identifiers

Top level model types, like contexts and roles, have names that are scoped to model

namespaces. This means that their name is prefixed with a namespace identifier. For

example, the type PerspectivesSystem is identified by:

model://perspectives.domains/System$PerspectivesSystem

Type versioning

Peers send deltas to a Distributed Runtime, so the installation may update its instances. A

delta contains type information. We have to accommodate the situation where a peer

might have another version of the model containing the type, than the receiver. Therefore

we need to version types, too:

model://perspectives.domains/System$PerspectivesSystem@1.0.0

Consider a domeinfile, representing a model at version 1.0.0. Now the author modifies the

context PerspectivesSystem, but nothing else. This means that just the identifier of

PerspectivesSystem changes: all other identifiers will retain their previous version.

model://perspectives.domains/System$PerspectivesSystem@1.1.0

Obviously, all references to PerspectivesSystem in the model will be updated, too (but

this does not cause those referring types to have version 1.1.0, too).

This allows for quick checks when a delta comes in to create an instance. All deltas from a

peer using model version 1.1.0 will be allowed, only a delta to create an instance of

PerspectivesSystem will be reason for further analysis7.

7 Newer type versions may be downward compatible. For example, a context with an extra role is
shape-compatible with instances without that role.

https://perspect.it/cw_perspect_it/System.json

8

Type renaming

A frequent kind of change is when the author chooses a new local name for a type. For

example, PerspectivesSystem might be renamed to PSystem. This is not a structural

change and has no consequences whatever, in runtime. Obviously, it does have

consequences in model time:

• Existing references to the name in the model text must be updated;

• Existing references to the name in other model texts must be updated, too.

However, type renaming does not cause an increase of the semantic version of a model. If

there are other reasons to increase the version, renamed types retain their original

version.

Nevertheless, instances refer to types by identifier. How can we make that work? How can

a type identifier change, while existing instances do not change their reference?

This is because a reference to a type name is not by its visible name (the local name

entered by the author, prefixed by namespace), but by a generated local name (prefixed

by namespace). The domeinfile contains a table that maps the two to each other.

When a model is first parsed and saved, all local names are replaced by an integer.

Integers start with 0 (for the root type, i.e. the namespace itself, the model identifier)

and then increasing by 1 for every next type that the parser encounters. For example:

model://perspectives.domains/System$PerspectivesSystem@1.0.0

is referred to in the domeinfile and in instances with:

model://perspectives.domains/System$0@1.0.0

If the author modifies PerspectivesSystem to PSystem, he should provide an instruction to

the parser:

context PSystem [renamed from PerspectivesSystem]

After a successful parse and save, he may (but need not) remove the instruction. The

parser looks up the old name in its table and replaces it with the new name.

Handling backwards-incompatible changes in instances

Let’s say that an author changes the type of a property from Boolean to Integer. Role

instances that have a value for that property are no longer described by the new type. A

property change like that needs to be followed by a change of the shape of the value in

the instances.

We may construct a scheme of automatic repairs to be carried out on data on the occasion

of such model changes. Lacking that, some changes can be carried out automatically to

ensure proper functioning, but possibly to the cost of semantics. For example, every type

9

can be mapped to a String. Booleans may be mapped to Numbers according to some

scheme (e.g. 0 for false, 1 for true), etc.

It turns out that very few model changes do actually cause a problem with the shape of

the instances (see the text Model versions and compatibility).

Imports

A model text imports dependencies in this way:

 use sys for model://cw.perspectives.domains/System@1.1.0

Type names imported from another namespace will be replaced by using the name table

of the corresponding domeinfile.

If the author updates the version of an import, the parser MAY compare the name table of

the previously used version with the that of the new version, if the author provides an

instruction:

 use sys for model:cw.perspectives.domains/System#1.15.0 [up from

1.11.0]

Imported names must be fully qualified (either written in full, or with a prefix). Hence the

parser can scan the model text for names that are replaced in the import (using the

prefix, if applicable) and replace them automatically in the text.

The next parse is then guaranteed to be able to replace the each imported identifier by its

number.

The model text may refer to types that have been dropped in the new version of the

import. The parser MAY report these to the author.

Instance identifiers

DOCUMENT IS ACTUEEL VANAF DIT PUNT.

We introduce two more custom schemes for instances of contexts and roles, respectively:

 context:{GUID}

is an URI identifying a context, while

 role:{GUID}

identifies a role.

Stores

With the introduction of public contexts comes the notion of multiple stores for instances.

Stores will be managed in a particular installation using a Perspectives model, that

10

enables the user to associate a symbolic name with a particular storage endpoint. This

association is unique to each user (each user can have her own mapping).

Multiple instance stores means we have to decide, for any instance identifier, from which

store to fetch it. We make this possible by having instance identifiers contain a reference

to their store. To that end, we append the symbolic store name (a simple string) to the

URI, separating it from the URI by a character that cannot be part of the GUID (we assume

the pipe character here):

 context:{GUID}|MYOTHERSTORE

If no suffix is appended, the default local store is assumed. We call such identifiers Local

Resource Identifiers, or LRI.

This means, however, that one user might have another identifier for an instance than

another, as it is the end user's prerogative to decide where to store his instances8. We

cannot, therefore, consider such an identifier to be an URI (it is not universal!).

Luckily this is not a problem, because resources representing an instance are unique for a

single user (various installations for the same user must, of course, use the same LRIs!).

Resources are never shared as such (except for public resources, see below).

However, peers communicate deltas that refer to instances. From the above we learn that

we cannot use the LRI to construct a delta. Instead, we stick to the two schemes

introduced above to identify resources in deltas. A peer receiving a delta to, say, create a

context, must use type reflection to find out in which store to put it and will extend the

received URI with the store's symbolic name.

Public instance identification

Not all instances are private: some are public. We’ve seen above we identify them with

URLs in a database whose name begins with cw_. It is, therefore, simple to distinguish

private from public instances. They are recognisable by their scheme:

• context:{GUID} is a private context instance in the default private store;

• context:{GUID}|MYOTHERSTORE is a private context instance in another private

store;

• https://perspectives.domains/cw_perspectives_domains/OurModels.json is

a public context instance that can be found at the given URL.

Determining the location of a public context: the default

The modeller can use the symbolic store names in a model text, to instruct the PDR to

create public context identifiers at a specific location (remember that a public context is

8 Moreover, the same store name might mean a different location for various users. In other words,
store names are indexed.

11

identified by an URL). Symbolic store names can be mapped onto concrete locations (i.e.

couchdb databases) using screens generated from a yet-to-be-constructed model. For

instance:

 case ModelManifest public NAMESPACESTORE

directs the PDR to create an instance of ModelManifest in whatever location its user has

associated with the symbolic name NAMESPACESTORE.

Actually, NAMESPACESTORE is a special case. It is mapped to the location of public contexts

associated with the namespace of the type. Casu quo: sys:ModelManifest expands to

model://perspectives.domains/System$ModelManifest and that, in turn is mapped

onto https://perspectives.domains/cw_perspectives_domains.

Non-default locations of public contexts

While that is perfectly usable for models in the perspectives.domains namespace9, it does

not extend to authors that create models in other namespaces. For example, we expect to

be able to fetch the ModelManifest of model://joopringelberg.nl/JoopsModel with

the URL https://joopringelberg.nl/cw_joopringelberg_nl/JoopsModel.json.

We handle this with an action that constructs the ModelManifest context and provides a

calculated name for it, like so:

 user User (mandatory)

 …

 perspective on ModelManifests

 in state ReadyToMake

 action CreateModel

 create_ context ModelManifest (Namespace + "/" + ModelName + ".json") bound to origin

 …

 context ModelManifests filledBy sys:ModelManifest

 -- e.g. "JoopsModel"

 property ModelName (String)

 -- e.g. "model://joopringelberg.nl"

 property Namespace (String)

 state ReadyToMake = (exists ModelName) and (exists Namespace) and not

exists binding

The screen that is generated from these model fragments allows the author to enter a

namespace – e.g. model://joopringelberg.nl – and a model name – e.g. JoopsModel –

9 Generally authored by the Perspectives organization.

https://perspectives.domains/cw_perspectives_domains
https://joopringelberg.nl/cw_joopringelberg_nl/JoopsModel.json

12

and then run an action that combines the two strings into the URL identifying the

ModelManifest instance.

A similar case exists for instances of Repository. A The author must be able to specify an

arbitrary URL for a repository that she creates10.

The default repository

An InPlace installation cannot function without the system model. Moreover, every

installation needs access to certain basic models (such as

model://perspectives.domains/BrokerServices). These models and their manifests

are stored in databases on the server https://perspectives.domains. This model database

is described by an instance of Repository that is identified by (and located in)

https://perspectives.domains/cw_perspectives_domains/BaseRepository.json.

Fetching the system model is hardwired into the PDR.

Part of the installation routine is to create an instance of sys:PerspectivesSystem. This

instance is created complete with an instance of the role

sys:PerspectivesSystem$Repositories, that is filled with this public repository11.

DOCUMENT IS ACTUEEL TOT OP DIT PUNT.

Cross Origin Resource Sharing

The ‘same origin policy’ implies that a script is allowed to request resources just from the

same domain it itself is served12. The PDR is served from https://inplace.works. This

would imply that the PDR could only request models (and other resources) from that same

domain. It would preclude the repositories at arbitrary locations as described in this

document.

However, a server may be configured such that it sends CORS headers. Couchdb supports

such configuration. Part of that configuration is to declare a set of origin domains. In our

case, that would be https://inplace.works.

Every hosting party that supplies a Couchdb server for repositories, should therefore

configure CORS in the same way. As a consequence, PDR sources, served from

https://inplace.works, are allowed to see resources served from such servers.

10 There is a subtlety involved here: she needs to store the context that describes a repository in
some location that she has rights to write to; and she must register in that description the location
of a database that actually functions as a repository of model files.
11 This role should be computed by fetching the instances of Repositories from the (local) database;
but then this should be an Aspect role that can be reused in model:CouchdbManagement.
12 https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

13

Redirection

In paragraph Model stores we suggest that if a domain is hosted by party A, while the

repository where models in that domain are stored is hosted by party B on another

domain, party A redirects requests to party B’s domain. However, CORS does not always

allow this13.

This holds especially for so called ‘pre-flight requests’ (made with the OPTION verb). From

MDN:

 Not all browsers currently support following redirects after a

preflighted request. (...) The CORS protocol originally required that

behavior but was subsequently changed to no longer require it.

However, not all browsers have implemented the change, and thus still

exhibit the originally required behavior.14

 In contrast, redirect is always allowed on simple requests. The PDR requests models in a

way that seems to satisfy the criteria for such simple requests, excepting that the

content-type header is application/json (which is not allowed). Nevertheless, in Chrome

(version 100.0.4896.88) no pre-flight request seems to be done.

The redirecting party should implement CORS for inplace.works, too.

We implement the PDR on the assumption that browsers allow redirection on our CORS

requests.

An example redirection directive for Apache, for example to be used in the

perspectives.domains configuration file:

RedirectMatch permanent "^/models(.*)$" https://inplace.works/models$1

A similar effect (but without redirect HTTP status code) can be achieved by a reverse

proxy:

ProxyPassMatch "^/models(.*)$" https://inplace.works/models$1

Observations

On the local version of perspectives.domains, we observe that

• the redirection fails because of the preflight problem with CORS15;

13 https://developer.mozilla.org/en-
US/docs/Web/HTTP/CORS/Errors/CORSExternalRedirectNotAllowed
14 https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#simple_requests
15 The preflight request cannot be observed in Chrome.

14

• the reverse proxy works, but only if the database is public (i.e. if no members or

admins are defined.

Obviously, the PDR does not send credentials for the reverse proxy (inplace.works) with

the request for the domain (perspectives.domains). So, while the reverse proxy works,

no credentials are sent along with it.

While retrieving models without credentials might be ok, uploading models certainly

needs credentials. This is a problem to be solved.

HTTPS and certificates

All domains should be approached using the https scheme. This holds for domains that

redirect, too. So, in our example, the server that redirects from joopringelberg.nl should

have a certificate for that domain.

	Introduction
	Some definitions
	On Uniform Resource Identifiers
	Model identification
	Mapping URIs to URLs
	Model stores
	Storage service providers
	Model versions
	Pre-release versions

	Model description: a public context
	Public context stores

	Type identifiers
	Type versioning
	Type renaming
	Handling backwards-incompatible changes in instances
	Imports

	Instance identifiers
	Stores
	Public instance identification
	Determining the location of a public context: the default
	Non-default locations of public contexts
	Non-default locations of public contexts
	Non-default locations of public contexts
	Non-default locations of public contexts

