
The context with a presence pattern
Joop Ringelberg 23-05-22 Version: 1

Introduction

When we say a user 'enters a context', we can mean two things: either he takes up a role

in that context, or he opens it on screen (the latter on condition of the former). The first

meaning is a matter of state in Perspectives: the role instance is part of the context, filled

by the user, or it is not. The second meaning, however, is a state that is much more

ephemereal. We could describe it as GUI-state. But for some types of context, it would be

convenient to know whether a user actually can *see* it at a particular moment, or not.

Think of a chat room, or a board game: participants would like to know whether their chat

partners or game opponents are currently available, or not.

ContextWithScreenState

model:System contains the context type ContextWithScreenState:

 case ContextWithScreenState

 external

 property IsOnScreen (Boolean)

The value of the property IsOnScreen reflects whether, at any moment, the context is

actually visible in the InPlace application. This depends on specific code in the Screen

React component.

InPlace will actually try to set this property on every context that is opened. However, the

PDR refuses to set a non-declared property on a role and fails silently to do so.

In order to actually use this facility, provide your context type with

sys:ContextWithScreenState as an Aspect (and its external role with the Aspect

external role).

Limitations

Note that as soon as more than one user play a role in such a context, the semantics of

IsOnScreen changes to at least one user can see it on screen.

In order to monitor who actually sees the context, we’d have to modify the mechanism to

change a property on a user role. InPlace must then be adapted to try to modify that

property for the current user opening the screen (Note: this will not work for calculated

user roles!).

	Introduction
	ContextWithScreenState
	Limitations

