
The case for an object variable in
rules
Joop Ringelberg 20-01-20 Version: 1

Introduction

The right hand side of a bot rule consists of a let* expression or of a series of assignments.

The rule condition, the expressions in the bindings and those in the assignments of the let*

are interpreted relative to the current context. For example, in this expression:

if SomeRole >> SomeProperty then

 bind AnotherRole to SomeRole

all the role identifiers are evaluated with respect to the context that the rule is defined

in.

If one of the assignments sets a property value however, we assume the property is on the

current object:

bot: for User

 perspective on: Role

 if AnotherRole >> AnotherProperty then

 SomeProperty = true

Here, SomeProperty is supposed to be carried by Role and, indeed, the system warns if

this is not the case. Role is said to be the object of the perspective.

Problem statement

What if we were to use a Calculated Role as the object of the perspective? That

introduces no problem. The value of the current object set is calculated as declared with

that Calculated Role.

But next consider that the computation depends on state that we actually change in the

rule’s right hand side! We might, for example, change a Boolan property’s value, causing

the object set to become empty. Obviously, the mechanism responsible for executing the

updates must capture the current object set as it exists at the start of the execution.

While this can be handled internally (because property assignment uses the current object

set implicitly), the following case fails:

FilteredRole = filter Role with Criterium

bot: for User

 perspective on: filteredRole

 if true then

2

 Criterium = false

 bind FilteredRole to AnotherRole

Suppose an instance of Role, Role_1, has value true for its property Criterium. As soon

as the first assignment of the rule’s effect has been carried out, FilteredRole will evaluate

to a set that does no longer hold Role_1! Role_1 will never be bound to AnotherRole by

this rule.

Solution

With version v.0.2.0 we introduce a variable in rules that is automatically bound to the

members of the current object set, as it exists when the rule is triggered. The variable is

called object (notice that variables are lower case names). So, the above rule can be

corrected as follows:

FilteredRole = filter Role with Criterium

bot: for User

 perspective on: filteredRole

 if true then

 Criterium = false

 bind object to AnotherRole

Similar cases

A similar argument can be made for the role instance that the query expression in a

Calculated Property is applied to. We can imagine a variable role to be bound to that

instance. However, use cases do not come easily to mind. There may be situations where

we want to filter a value with reference to (properties of) the original role instance.

By analogy, we could argue for a variable context for Calculated Roles. However, while

that variable would be convenient, it would not enable anything we cannot yet express, as

explained with the following example:

MyCalculatedRole = let* context <- (SomeRole >> context) in …

As any role instance has just a single context, we can easily compute it and bind it in a

let*.

	Introduction
	Problem statement
	Solution
	Similar cases

