
Copyright 2019-2021 Joop Ringelberg and Cor Baars

Syntax of the Perspectives Language
Joop Ringelberg 29-10-19 Version: 3

Introduction

This text gives the syntax of the Perspectives Language. It is an appendix to Introduction

to the Perspectives Language.

Identifiers

identifier = qualifiedName | prefixedName | segmentedName

qualfiedName = ‘model:’ segmentedName

prefixedName = prefix ‘:’ segmentedName

prefix = lowerCase+

segmentedName = segment [‘$’ segmentedName]*

segment = upperCaseCharacter | [alphaNum | ‘_’]+

On character classes

Perspectives is programmed in the Purescript language. We use the definitions of various

character classes as defined in the Unicode package. These definitions are quite

extensive; we do not repeat them here but refer the interested reader to the

documentation of that package.

upperCaseCharacter. From the documentation of isUpper: upper-case or title-case

alphabetic Unicode characters (letters). Title case is used by a small number of letter

ligatures like the single-character form of /Lj/.

alphaNum. Alphabetic or numeric Unicode characters.

lowerCase. Lower-case alphabetic Unicode characters (letters).

stringLetter. Any character that is not a double quote, a backslash or an ampersand.

Escape character sequences are allowed, too, but they are not documented here. We

refer to the source code of Text.Parsing.Parser.Token

Type declarations

A Perspectives model is a nested hierarchy of type declarations. The syntax we give here

is quite permissive in the sense that many syntactically correct expressions are semantical

nonsense. Indentation is meaningful in PL. The syntax below suggests the indentation,

without being precise.

https://pursuit.purescript.org/packages/purescript-unicode/4.0.1/docs/Data.Char.Unicode
https://pursuit.purescript.org/packages/purescript-parsing/5.0.3/docs/Text.Parsing.Parser.Token

Copyright 2019 Joop Ringelberg and Cor Baars
2

BNF-like meta grammar

The Perspectives Language grammar is given in a format that derives from Backus-Naur

Format (BNF). These are the conventions used:

<production> refers to a production rule.

[...] whatever is between brackets, zero or one time (optional)

<production>* zero or more times the production.

<production>+ one or more times the production.

Grouping constructs:

{...} whatever is between brackets, exactly once.

{...}* whatever is between brackets, zero or more times

{...}+ whatever is between brackets, one or more times

{<p> | <q>} <p> or <q> (grouped for convenience or to disambiguate)

(<p> <q>) <p> and <q> between parentheses, i.e. the parenthesis are

part of the production.

NOTE: parenthesis have no special meaning in this grammar syntax. Hence '(' and ')' are

perfectly ordinary parts of a production.

<p> | <q> <p> or alternatively <q>

'{' the literal character "{"

state the literal keyword state. We don't write keywords between

double quotes.

NOTE: double quotes have no special meaning in this grammar syntax. Hence " is a

perfectly ordinary part of a production.

The syntax

context =

 <contextKind> <ident>

 use <lowercaseName> for <ident>

 indexed <ident>

 aspect <ident>+

 state <state>

 {<context> | <role>}+

role = <calculatedRole> | <enumeratedRole> | <externalRole>

calculatedRole =

 <roleKind> <ident> = <expression>

 <rolePart>*

Copyright 2019 Joop Ringelberg and Cor Baars
3

enumeratedRole =

 <roleKind> <ident> [(roleAttribute [, roleAttribute])] [filledBy

<ident>]

 <rolePart>*

roleKind = user | thing | context | external

roleAttribute = mandatory | relational | unlinked

externalRole =

 external

 <rolePart>*

rolePart =

 <perspectiveOn> |

 <perspectiveOf> |

 <inState> |

 <onEntry> |

 <onExit> |

 <state> |

 <aspect> |

 <indexed> |

 <property> |

 <view>

state =

 state <ident> = <expression>

 <state>*

 <onEntry>

 <onExit>

 <perspectiveOn>

 <perspectiveOf>

property = <calculatedProperty> | <enumeratedProperty>

calculatedProperty =

 property <ident> = <expression>

enumeratedProperty =

 property <ident> [(propertyAttribute [, propertyAttribute])]

roleAttribute = mandatory | relational

view =

 view <ident> (<ident>+)

perspectiveOn =

 perspective on <expression>

 <roleVerbs>

 <perspectivePart>*

perspectiveOf =

 perspective of <ident>

Copyright 2019 Joop Ringelberg and Cor Baars
4

 <perspectivePart>*

perspectivePart =

 defaults

 <propertyVerbs> |

 <roleVerbs> |

 <inState> |

 <onEntry> |

 <onExit> |

 <action> |

 <perspectiveOn> |

 <perspectiveOf>

aspect =

 aspect <ident>

inState =

 in state <ident> [of {subject | object | context} state]

 defaults

 <propertyVerbs>

 <roleVerbs>

 <perspectiveOn>

 <perspectiveOf>

 <action>

onEntry =

 on entry [of {subject | object | context} state <ident>]

 {<notification> | <automaticEffect>}*

onExit =

 on exit [of {subject | object | context} state <ident>]

 {<notification> | <automaticEffect>}*

action =

 action <ident>

 <statement>*

 |

 letA

 {<lowercaseName> <- <expression>}*

 in

 <statement>*

automaticEffect =

 do

 <statement>*

 |

 letA

 {<lowercaseName> <- <expression>}*

 in

Copyright 2019 Joop Ringelberg and Cor Baars
5

 <statement>*

notification =

 notify [<ident>] sentence

sentence = " { <charString> | '{' <expression> '}' }* "

charString = a string of any character that is not { or ".

roleVerbs =

 only (<RoleVerb> {, <roleVerb>}+)

 |

 excluding (<RoleVerb> {, <roleVerb>}+)

 |

 all roleverbs

propertyVerbs =

 view <ident> [(<propertyVerb>{, <propertyVerb>}+)]

 |

 props [(<ident> {, <ident>}+)] [verbs (<propertyVerb>{,

<propertyVerb>}+)]

roleVerb = Remove | Delete | Create | CreateAndFill | Fill | Unbind |

RemoveFiller | Move

propertyVerb = RemovePropertyValue | DeleteProperty | AddPropertyValue |

SetPropertyValue | Consult

lowercaseName = an identifier consisting solely of lowercase characters.

ident = {<name>$}*<name>

name = an identifier consisting of alphanumerical characters, upper and

lowercase, starting on an uppercase character.

Range types

The range types are defined operationally as follows:

Number: not yet decided.

Boolean: this type is inhabited by just the values true and false, designated by the same

symbols.

String: a sequence of any character type, between double quotes

Date: all formats that can be parsed by Javascript Date.parse(), enclosed in single quotes.

See Date Time String Format.

These same types govern the forms of the terminals in the expression syntax below:

number, boolean, string, date.

Expressions

Expressions form a significant subpart of the Perspectives Language. They occur in several

places in the type grammar:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/parse#Date_Time_String_Format

Copyright 2019 Joop Ringelberg and Cor Baars
6

• after the equals-sign in calculated roles and properties

• after the ‘if’ in the condition of an Action

• after the assignmentOperator in an assignment

• after the ‘if’ in a botAction

• after the ‘then’ in a botAction.

Again, the syntax allows for more expressions than that are semantically valid in PL. For

example, we do not distinguish between expressions that yield a Boolean value and those

that yield other values, even though there is a clear case for such Boolean expressions.

expression = simpleExpr | unaryExpr | binaryExpr | let*

simpleExpr = identifier | value | variable | >>= sequenceFunction | ‘this’

| ‘binding’ | ‘binder’ | ‘context’ | ‘extern’ |

value = number | Boolean | string | date

variable = lowerCase+

sequenceFunction = ‘sum’ | ‘product’ | ‘count’ | ‘minimum’ | ‘maximum’

unaryExpr = ‘not’ expr | ‘createRole’ identifier | ‘createContext’

identifier | ‘exists’ identifier

binaryExpr = ‘filter’ expression ‘with’ expression | expression operator

expression | ‘bind’ expression ‘in’ expression | ‘unbind’ expression from

expression | ‘unbind’ expression

operator = '>>' | '==' | '<' | '>' | '<=' | '>=' | 'and' | 'or' | '+' | '-'

| '*' | '/'

let* = ‘let*’ binding+ ‘in’ body

binding = variable ‘<-‘ expression

body = expr | assignment+

Operator precedence

Operator precedence is ruled by weights for each operator. Parentheses can be used to

override these precedences.

Operator Precedence

>> 8

== 0

/= 0

> 1

< 1

<= 1

>= 1

and 1

or 2

+ 3

- 2

* 5

/ 4

Copyright 2019 Joop Ringelberg and Cor Baars
7

>>= 8

filter 9

	Introduction
	Identifiers
	On character classes

	Type declarations
	BNF-like meta grammar
	The syntax
	Range types
	Expressions
	Operator precedence

