
Synchronisation
Joop Ringelberg 19-03-20 Version: 1

Introduction

Because the Perspectives Runtime is a distributed system, we have to find a way to make

state changes initiated by a user available to peers who share a perspective on the

changed entity. We call that process synchronisation. In this text we explore some

technical issues.

Users are the only source of state changes. A user can initiate changes through some client

program that will communicate his intentions to the PDR. This client-PDR communication

does not concern us here, but the Perspectives Application Program Interface (API, the

module Perspectives.Api) is a good starting point for our exploration. Why? Because

here we find top level functions that can be invoked by the user to change state.

In principle, if we could make the PDR of peers invoke the very same functions with the

same arguments, they would change their state in the same way and we would have

synchronised their local representation of Perspectives State. We might call this a remote

procedure call mechanism (RPC).

Of course, not every change a user makes is relevant for all his peers. A peer should only

be informed if he has a perspective on the changed entity. The PDR finds out by consulting

the model and reflecting that on the instances and users at hand.

The bulk of this text is devoted to this RPC mechanism.

It is noteworthy that there is another starting point for our exploration and that is the

language in which a modeller can write rules for bots. By writing such rules, the modeller

automates some user actions (in a specific role). In principle, a bot has exactly the same

functions for changing state to his disposal as the user. So we could take the module that

implements the semantics of the language keywords for rules as a second starting point for

our exploration: Perspectives.Actions.

There also is another mechanism by which PDRs can synchronise state and that is by

sending an invitation by mail (or another manual transport mechanism). An invitation is

the JSON serialisation of a number of contexts and roles. By dropping such a document on

the Perspectives client program screen, the user instructs his PDR to add these contexts

and roles to his local cache and store. This synchronises state with respect to the

invitation between sender and receiver1. This mechanism is of no importance to this text.

1 This mechanism is to be used by users who are not yet connected through Perspectives. It is the
mechanism by which they become peers in at least a single context.

2

Finally, we mention a last mechanism that is supported by the PDR by which state can be

changed and that is loading and parsing a file with text written in the Context Role

Language (CRL). Such a text, not surprisingly, describes instances of roles and contexts.

Loading such a file contributes these instances directly to the cache and database.

However, the end user has no means of calling the relevant functions. They exist mostly

for testing purposes and for modellers. A model describes types, but must be

complemented by a small number of instances (among them a context instance that

describes the model; it is used by repositories to present an inventory of available

models).

We will now turn our attention to the question: what is in a remote procedure call?

What procedures to call?

It turns out that all functions2 that lead to state change are contained in just three

modules:

• Perspectives.Instances.Builders

• Perspectives.Assignment.Update

• Perspectives.SaveUserData

However, some of these functions call others in the same set of modules. Obviously we

want to restrict the RPC mechanism to ‘top level’ functions, to minimise the number of

calls. We’ll call the RPC functions DeltaFunctions, in honour of the fact that they should

add a Delta to a Transaction (Transactions are the unit of shipping synchronisation

information between PDRs). A Delta mostly is the ‘serialised’ application of a

DeltaFunction to some arguments, but contains a little more information that need not

concern us here3.

So all functions in these three modules are candidate DeltaFunctions. We have two criteria

for a real DeltaFunction:

1. It should be used in either the Api or the Actions module, and then either

a. directly, meaning that it is the implementation of the request sent by the

user through the client program, or:

b. indirectly, meaning that it is used in the implementation of handling such a

request.

2. It should not have a Context- or Role JSON serialization as argument.

To explain the latter requirement: the client program can send a JSON fragment to the API

when it wants to construct a context or role instance. However, we don’t want to include

such fragments in Deltas because we’d have to specialise them for each peer. As we

2 Perspectives is written in Purescript, a functional language. So strictly speaking we just have pure
functions. Nevertheless, there are mechanisms to handle side effects like storing information in a
database. In this text we will use the word ‘function’ too, when such side effects are sorted, not
bothering to distinguish them from statements and procedures.
3 Such as ordering information and a list of users for whom the Delta is important.

3

already have a mechanism in place to select relevant peers per elementary state change,

we stick to Deltas with just such elementary changes.

Figure 1 shows what state changing functions are available and whether they are used in

the Api or the Actions module.

Figure 1 State change function supplying- and demanding modules. An x marks the usage of a function in the
current implementation; a ? indicates that it will be used in the final implementation. Functions with a
colored (non-white) background are DeltaFunctions.

Types of Deltas

We group the DeltaFunctions in five categories, each described by a type of Delta. Some

Delta members have a Maybe type if at least one function in the corresponding category

has no parameter that binds that member while others do (this allows us to minimize the

number of Delta types). Figure 2 gives an overview.

The ‘Universe’ Deltas deal with creation and annihilation of context- and role instances.

The ContextDelta deals with adding or removing role instances to or from a context

instance.

The RoleBindingDelta and RolePropertyDelta deal with the two ways to change a role

instance.

4

Figure 2. Delta types and Delta functions.

Executing Deltas

On receiving a Delta, the PDR executes the function it specifies, applying it to values of

the Delta members according to a fixed member-parameter mapping worked out in the

source code.

Deltas are shipped in Transactions. It is important to execute Deltas in the same order as

in which the DeltaFunctions were executed by the sender of the Transaction. One cannot,

for example, add a Role instance to a Context instance before both are created! This

order is preserved in the member sequenceNumber that is in each Delta4.

The DeltaFunctions are monadic. Their monad is MonadPerspectivesTransaction.

Applying runMonadPerspectivesTransaction to the application of a DeltaFunction will

actually effect the state change. It will, too, trigger rules and update queries.

The sending PDR runs a value in MonadPerspectivesTransaction such that Transactions

are actually distributed to peers. However, when a Transaction is run in the receiving PDR,

rules are triggered and queries updated, but no Transactions are distributed.

Declarative versus procedural synchronization

Synchronization by remote procedure call is not a very declarative mechanism. We rely on

re-executing the original instructions in another PDR to reconstruct the relevant parts of

state. Instead, we could try to send a full description of changed data.

4 We cannot simply compile an ordered list of Deltas, because Purescript collections have to be
homogeneous.

5

While this would be of some interest5, it would also be much more verbose. Also, it cannot

be complete. This is because users have different perspectives. As a consequence, a

particular role instance may be the binding of another role for some users but not for

others. So we cannot put that information in a Delta. It would be indiscrete, as a user

would send information on binder roles to a peer who did not even know of their

existence; and it would be incomplete, as the user has no way of knowing the entire set of

binders for a particular role according to the perspective of a peer.

Interestingly, peers that share a perspective on a role always have the same set of role

instances for a particular context instance. We have no ‘conditional’ perspective, where

the ability to see a role instance depends on that role’s property values or binding6.

Design considerations per DeltaFunction

CreateEmptyRole

Conceptually we want to create a UniverseRoleDelta in the function createEmptyRole.

We should compute the users that should receive this delta.

There are several reasons why we don’t want to compute these users when we construct

the empty role. For one, if we construct multiple instances (in constructContext), we

don’t want to recompute the users for each of them (the result would always be the

same). Second, they are the same users as that should receive the ContextDelta that

describes how the new role instance(s) should be added to its context instance. But we

need but a single ContextDelta for all instances of a role, so we don’t want to create this

delta in createEmptyRole.

So instead we compute the users in a function addRoleInstancesToContext and we have

that function add the deltas to the transaction. As createAndAddRoleInstance and

constructContext are the only functions to call createEmptyRole and both call

addRoleInstancesToContext, we have covered all cases.

RemoveRoleInstance, removeAllRoleInstances

The DeltaFunction removeRoleInstance (Perspectives.SaveUserData) should add a

ContextDelta to the current Transaction and so should removeAllRoleInstances. We’ve

refactored the common functionality into an update function

5 We have two use cases. First, such Deltas could be used for an undo mechanism (particularly for
deleting entities). Second, a collection of such Deltas would be a valuable base for machine
learning or user statistics.
6 To prevent misunderstanding: we do have calculated roles, that allow filtering based on property
values and binding. The set of instances for such a calculated role might be different for each peer.
However, the base enumerated set of unfiltered instances is always the same for each peer.

6

removeRoleInstancesFromContext (module Perspectives.Assignment.Update). It is

this function that actually adds a ContextDelta, and a UniverseRoleDelta.

Roles are removed, too, when the containing context instance is removed. However, we

don’t need – even don’t want – ContextDeltas or UniverseRoleDeltas in this case. The

receiving PDR can work out by itself what role instances to remove.

On the other hand, we do need queries to be updated in all cases, taking into

consideration the binders of the roles that were removed. We share the implementation of

this process with the function addCorrelationIdentifiersToTransactie.

Similarly, we want rules to be triggered, so we want to know all contexts that have a bot

role with a perspective on the removed role.

Finally, for synchronization we need all users that should receive the Deltas. These are

users in the same contexts that we needed to trigger rules. It turns out that it is more

efficient to compute contexts and users in a single process. This is implemented in the

function usersWithPerspectiveOnRoleInstance. It returns the users and adds the

contexts to the underlying Transaction.

	Introduction
	What procedures to call?
	Types of Deltas
	Executing Deltas
	Declarative versus procedural synchronization
	Design considerations per DeltaFunction
	CreateEmptyRole
	RemoveRoleInstance, removeAllRoleInstances

