
Sync subnetworks as a consequence
of a new binding
Joop Ringelberg 28-05-20 Version: 1

Introduction

In the text Perspectives on Bindings we’ve concerned ourselves mainly with changing

values of Properties of a Role. Another relevant change is that some user adds a binding to

a Role. While we have (in version 0.4.0) a mechanism in place that informs peers of such

an isolated change, we yet lack a mechanism to provide them with the necessary deltas to

ensure they have access to the role graph of which that binding is the root. This text

describes that mechanism.

Before we do so, it is important to notice the large differences between binding a role and

the other modifications, to build some intuition for the magnitude of this operation.

Binding: the way to build large structures

Adding roles and properties will build up isolated contexts. However large these may be,

their structure is simple. Only by creating bindings between roles can we build more

complicated structures. In general, the data structures that we can create are graphs of

contexts and roles.

User roles have perspectives. For the users, they make roles in and around their context

visible. The modeller may define quite long paths through the graph, that give a user

playing a specific role the right to view roles in far-off contexts. These paths are defined

over types.

When in runtime a graph consisting of instances is built, more and more roles become

visible to the end users. Now imagine two as yet unconnected subgraphs of instances and a

user role U in one of them1. The other subgraph has been created by other uses and is not

yet available to U. Let’s assume that for users of that type, a path is defined that runs

through both subgraphs. The moment that the right binding connects both subgraphs, user

U should suddenly be able to ‘see’ into the other subgraph.

This must translate into a whole set of deltas to be shipped to U, so that his PDR can

construct that formerly invisible subgraph.

1 One may wonder: what is the graph that they are subgraphs of? In our example we assume that
part of it is available to one user, while another part is available to others. It helps to image a very
large graph – we call it the Perspectives Universe – that contains all data kept by all users of
Perspectives. There is no single place (no computer) where this graph exists in its entirety. Each
user sees part of it: what he sees, falls within his horizon.

2

This algorithm is suboptimal

We send deltas for the entire subgraph that should be visible to peer P. However, P might

already have access to parts of that graph – indeed, maybe to the entire graph. So the set

of deltas we prepare may contain too much information.

On receiving the Transaction, P will have to handle this: detecting a UniverseRoleDelta

for a Role instance he already knows, he will simply not create a new instance. The other

deltas are treated similarly.

While this is not optimal, there is no quick check to find out whether P already has access

to parts of the graph. We might run the inverted queries stored with the type of a node in

the graph to find all peers having access to it. If P is one of them, we don’t have to send a

new UniverseRoleDelta. However, this might be a very expensive computation. Indeed,

when we bind a user role to a graph that bottoms out at the ‘own’ user, that query would

return all peers with access to the own users’ properties – potentially many hundreds or

even thousands of them!

General approach

Consider, again, the simplest case of a query that computes a role set: a series of steps (a

path). It will be applied to a context instance. Its first step will take it to a role instance.

At that point, we can invert that first step to bring us back to the context of origin; we

can also run the rest of the query and it will bring us the results as computed from that

role instance. Notice, that the first step may have landed us on multiple instances of a

Role!

We can repeat that for each successive step in the query: invert the steps we’ve taken so

far, to take us back to the context of origin; run the rest of the query to get (part of) the

result set.

Notice, that the steps back always form a path. That is true, even, if the original query is

a tree! No matter how high up in its branches we are, the way back is always a path.

To return to the problem at hand, suppose that some user U has two subnetworks within

his horizon. Another user, P, has only one of these within his horizon; the other is hidden.

P has a perspective on a calculated role that will fetch him roles from the hidden part, but

its query execution halts at a particular node that lacks a binding. That binding would, as

it were, bridge the two networks for P.

Now U constructs that binding. Surely, U should now send him that formerly hidden

network.

We can envision the two parts of the query at the node R that received the new binding.

One part is the inversion that leads us back to the context of origin of the query. Here is

P, who has a perspective on that particular calculated role. The other part is the rest of

the original query. This is how we find out what to send to P:

3

1. Apply the inverse query to R, to find the context of origin and with that the user

P2.

2. Apply the rest of the query to R, to find all contexts and roles that it visits. These

we must send to P.

Intuitively, we have ‘kinked’ the query at R. The left part we invert: it takes us backwards

to the context of origin. The right part we keep as it is: it takes us forwards to the query

results.

So here is the outline of our approach:

1. In compile time, we do not merely invert queries at each step; we kink them,

keeping both the inverted backwards part and the remaining forwards part. These

we store with the role types (just as we have described for inverted queries in

Query Inversion over Model Boundaries and in Perspectives on Bindings).

2. In run time, we do some extra work for RoleDeltas, to find the extra nodes we

should send to some users. This involves running the remaining forwards part of the

kinked query.

Finding nodes to be sent from query assumptions

When we run a query, we obtain a role set as result (or a set of values in case of a

Property query). However, the query may have visited many intermediary roles that

should be sent to P as well. To find them, we can re-use the existing dependency tracking

mechanism we deploy to keep up to date the results of queries sent in by the client

through the API (a client program requests a query to be executed and expects to be

notified when the results change due to changes to the underlying network of context- and

role instances).

The dependency tracking works by accumulating assumptions. Each query step adds an

assumption.

Step Assumption
constructor

Assumption parts Query triggered by:

role R RoleAssumption the context
instance + R

Any change to instances of R

external External the context
instance

Never (external role is fixed)

binding Binding role instance Changes to the binding of the
role instance

binder R Binder the role instance +
R

Changes to the binders R of the
role instance

property P Property the role instance +
P

Changes to the values for P of
the role instance

context Context the role instance When role instances are moved
to another context.

2 We store, with an inverted query, the user role types that have a perspective on the query whose
inversion it is.

4

me Me the context
instance + maybe
the role instance

When a user role is added to
the context that is ultimately
bound by the user of the
system.

From these assumptions, we can derive the role and context instances that should be sent

to P.

For a RoleAssumption, we create a UniverseContextDelta, a UniverseRoleDelta and a

ContextDelta. These instruct P to create an empty context, an empty role and to

connect the two.

We do the same for the Me, Binding, Binder, Property and Context instance.

For the External assumption we do nothing, because a query with a kink by construction

never starts with the external step. So whenever external is applied, a context step

will have been applied before (as it is the only way to get to a context). That step already

adds all deltas that we could wish to add for an external step.

This algorithm is suboptimal

We currently (version v0.5.0) handle each assumption in isolation from the rest. That

causes a lot of deltas to be generated twice. For example, a query where a context step

is followed by a role step will create the ContextDelta twice. Only one will be added to

the transaction, but we could avoid the double work if we take the order of assumptions

into account and keep an eye on the history of assumptions we’ve handled. This is for

future optimisation.

Property set

User P will have a perspective on the Calculated Role that allows him to see the value of

some Properties. We create Deltas for these Properties by obtaining, for each such

Property, its value from each of the role instances in the set that results from applying the

forwards part of the query. Remember that we run that forwards part from the node that

U just added a binding to. Getting a Property’s value from a role instance generates

assumptions, too, so this ties in nicely with the general approach outlined above.

Now, what if the original query actually ends at the role that U added a binding to? We

then obtain the property values from that node itself. As a justification: the remaining

forwards part of the query is empty: we could construe that as the identity function, that,

applied to the role instance, yields itself, so it forms by itself the result set of the

remainder of the query.

	Introduction
	Binding: the way to build large structures
	This algorithm is suboptimal

	General approach
	Finding nodes to be sent from query assumptions
	This algorithm is suboptimal

	Property set

