
Stomp for InPlace
Joop Ringelberg 03-11-20 Version: 1

Introduction

This text can be read as a companion to A Transport Layer for the PDR. In it we describe

in some detail the technical design decisions underlying the implementation of the

message layer.

Technology chosen

The implementation is built on RabbitMQ

(https://www.rabbitmq.com/documentation.html) and Stompjs

(http://jmesnil.net/stomp-websocket/doc/). The latter library caters for Stomp version

1.0 and 1.1, not 1.2. The Stomp web plugin for RabbitMQ handles all versions.

Exchange type

While peers may use the Perspective User Identity (PUI) to send Transactions to, only the

intended receiver must be able to subscribe to the relevant queue on the AMQP server. To

achieve this end, we use a Topic Exchange where

• the routing keys are PUIs;

• the binding keys are PUIs, but only the PDR for a particular PUI knows the

identification of the queue that binds that PUI.

Note that not even the server administrator has to know the queue that uses a particular

PUI as binding key. The subscribing PDR can keep it to itself.

A Topic Exchange matches routing keys to binding keys, where the latter may include

wildcards. We have the simplest possible situation, where both keys are equal. It is the

binding rule that connects the key to a particular queue, that protects the receiver from

others marauding his post box!

Creating topic queues

The web client using Stomp can create a queue with a particular binding key in a Topic

Exchange; we don’t need the RabbitMQ administrator for that.

It turns out that when a new vhost is created using the management console of RabbitMQ,

all types of Exchanges are created for it. Stomp sends a frame with a destination string

that starts with “/topic” automatically to the amq.topic Exchange of that vhost.

A queue with a particular binding key and queue identification can be created from the

client as follows:

https://www.rabbitmq.com/documentation.html
http://jmesnil.net/stomp-websocket/doc/

2

 const {id, unsubscribe} = client.subscribe(

 "/topic/" + topic,

 function(message){…}, // handle the message

 { durable: true

 , "auto-delete": false

 , id: "secred-id" // the secret queue identification.

 });

Notice the fields in the object that is provided as last argument to subscribe. They

specify that, apart from the queue identification, the queue is not to be deleted when no

one subscribes to it and will be available after the server restarts, too.

This behaviour is governed partially by the semantics attributed to the destination string

that, by default, Stomp assigns neither structure nor semantics to. For RabbitMQ this is

described in https://www.rabbitmq.com/stomp.html.

Acknowledgements

We don’t want Transactions to get lost. To prevent the RabbitMQ server from deleting a

Transaction before it has been handled by the receiver, we make the receiver send

explicit acknowledgements.

By default the server removes a message after it has been delivered. To change that

behaviour we give the object supplied as third argument to subscribe with another key:

 ack: “client”

Now the subscribing client has to acknowledge the message, using the function that is the

value of the field ack on the message that is received.

Heartbeat

By default, the Stomp server sets up a heartbeat (RabbitMQ by default sends a beat every

10.000 milliseconds). However, as we have the client send explicit acknowledgement, it

seems not necessary to have a heartbeat on the socket level. This is how to disable it:

 const client = Stomp.client(url);

 client.heartbeat = {incoming: 0, outgoing: 0};

User accounts

The RabbitMQ manager must create user accounts; there is no self-registration.

https://www.rabbitmq.com/stomp.html

	Introduction
	Technology chosen
	Exchange type
	Creating topic queues
	Acknowledgements
	Heartbeat
	User accounts

