
State and dependency tracking
Joop Ringelberg 22-11-19 Versie: 1

Introduction

This document is part of the description of the internal design of the Perspectives

Distributed Runtime.

The runtime keeps state in an Avar in a Reader monad:

 type MonadPerspectives = ReaderT (AVar PerspectivesState) Aff

Part of that state is for dependency tracking. Dependency tracking means that we

recompute certain values when their input values, taken from representational state,

change. This is the functional reactive pattern. With representational state we mean the

information that is stored, in terms of contexts and roles, that represents part of the

environment for end users.

We realise this by recording the relation between parts of that state, and functions that

need to be recomputed.

It turns out, however, that we cannot store functions of type MonadPerspectives a in

that state. Nevertheless we need to store such functions. They are kept in two caches that

are stored in global, mutable variables.

The actual dependency administration can be kept in PerspectivesState.

Functions cached in global variables

We have three use cases:

1. A client of the PDR requests the value of a query. Whenever the underlying

representation of contexts and roles changes, the PDR needs to update the query

result and send it to the client (functional reactive pattern).

2. A bot has a rule with a condition that is true in certain states of a context instance.

When the rule is triggered because of a state change, the right hand side of the

rule must be executed. This right hand side consists of assignments and (context-

and role-) creation statements. These change the representational state.

3. External functions. An external function can be used by the modeller by using the

callExternal keyword. Such functions are defined in Purescript modules that are

compiled with the PDR, but are not part of the Perspectives Language (and are, in

that sense, ‘external’ to the language).

In the first case, the PDR constructs functions of the following type:

 type ApiEffectRunner = Unit -> MP Unit

2

In the second case, the PDR constructs functions of this type:

 type Updater s = s -> MonadPerspectivesTransaction Unit

Here, s is either a ContextInstance or a RoleInstance.

The third case stores structures of this form:

type ExternalFunction = {func :: HiddenFunction, nArgs :: Int}

Here, a HiddenFunction is a type not penetrable to the Purescript Compiler.

Updaters are stored in a cache defined in the module

Perspectives.Assignment.ActionCache. They are indexed by context instance

identifier and action type (a so-called ActionInstance)

ApiEffectRunners are stored in a cache defined in the module

Perspectives.DependencyTracking.Dependency. This cache is indexed by correlation

identifiers that are communicated over the external API with clients of the PDR.

ExternalFunctions are stored in a cache defined in the module

Perspectives.External.CoreFunctionsCache.

Dependency tracking administration

Queries

The administration for query-dependency tracking is defined in the module

Perspectives.CoreTypes:

type AssumptionRegister = F.Object (F.Object (Array CorrelationIdentifier))

The Foreign Objects are indexed by strings that represent the two elements of an

Assumption. An Assumption is a combination of

• a resource (ContextInstance or RoleInstance)

• and a type (EnumeratedRoleType, CalculatedRoleType,

EnumeratedPropertyType or CalculatedPropertyType), or the special identifier

"model:System$Role$binding"

An assumption points to the value of a role in a context, a role binding, or of a property in

a role1. When changes to such values are made, the code reviews the assumption register

to find correlation identifiers that identify functions that compute queries dependent on

those values.

An instance of AssumptionRegister is stored in PerspectivesState under the key

queryAssumptionRegister.

1 See Implementing the Functional Reactive Pattern for a better explanation of assumptions (called
‘steps’ in that text).

3

Object versus GLStrMap

The AssumptionRegister is created as a Foreign.Object, while the other two caches

are created as a GLStrMap. The underlying representation is the same. However, the

former is modified purely functional, while the latter is modified destructively. We

believe that there is no functional difference between the two in the way it is used in

Perspectives. The destructive operations are faster. The implementation difference

reflects the current state of the program and is likely to change in the future.

	Introduction
	Functions cached in global variables
	Dependency tracking administration
	Queries
	Object versus GLStrMap

