
Revision handling
Joop Ringelberg 17-03-20 Version: 1

Introduction

Perspectives stores its data in Couchdb: PerspectContext and PerspectRol are the primary

representation. However, we also store DomeinFiles and these in turn have some contexts

and roles. Each of these ‘entities’1 are stored as JSON documents and Couchdb provides

them with a Revision2 in the form of an extra parameter (usually _rev).

When we want to overwrite a document, we have to provide its current revision string as a

query parameter3. For sake of efficiency, we keep the revision in entities themselves.

Obviously we have to keep that value up to date. This turns out to be complicated, given

the asynchronous interaction with Couchdb.

Note: this text is not about published versions of a model.

Overview of the flow of entities and documents

Each type of entity can be cached and, its serialised version is stored as a document in

Couchdb. In this sense, cache and Couchdb are both a destination and a source. However,

we have more sources and destinations.

Sources

Besides cache and Couchdb, an entity can come from:

1. A creation statement, executed by the end user.

2. Parsing an Arc model (a DomeinFile is the serialisation of a model).

3. Parsing a CRL file (it is a syntactical representation of Context- and Role

instances).

4. Starting to use a model.

5. The query that retrieves the external role of model descriptions from a repository.

6. A UniverseContextDelta or a UniverseRoleDelta, originating from creation

statements executed by other users.

1 We use ‘entity’ as the group name for the data instances that represent Perspectives runtime
information. We use ‘document’ as the group name for the JSON-serialized version of an entity, in
the context of Couchdb.
2 Couchdb uses Revision. We distinghuish this from version. An entity may change over time and we
might call these successive reincarnations versions.
3 We can also provide it as the member _rev in the document itself. Even though we recognize that
member in our definitions, we cannot use it in communicating with Couchdb. This is because we
rely on Generic classes for serialising and this means an extra object layer around the resource
itself. Hence, our modelled _rev member is buried and invisible for Couchdb.

2

7. A query on Couchdb (e.g. all instances of an Enumerated Role type).

Of these, only the last one gives us revisioned entities. Each other case has to be handled

carefully.

Destinations

Contexts and Roles may be serialised as either Deltas, or JSON in a format that is suitable

for exchange between PDR installations that are not connected (it is also used to create

instances client side). None of these have revision information in them. Revisions will be

re-established in the receiving PDR.

Why do PDR instances not share version information?

Many end users can share a context. So why don’t their PDRs share revisions? The reason is

that each user may have a different perspective on that context (or, for that matter, on

roles, too). Obviously if the entities themselves are different, their serialisations must

differ and hence we’re talking about different documents altogether! Different documents

have different revisions. This might be confusing, so let’s summarize all kind of variants

we’ve seen:

1. A revision applies to a Couchdb document (the serialised entity).

2. A perspective gives a user a unique variant of a context, depending on his role in

it.

3. As a context (or role) evolves over time, we can say a user’s perspective on it has

different successive versions (and their serialisations have different revisions).

So, because the perspective on an entity has different successive versions, its serialisation

will have different revisions. And because perspectives are unique, each user has a unique

serialisation and hence revision for a context that all participants identify as the same!

Maintaining consistent revisions

First, we explain the revision handling between Couchdb and cache. Then we turn to the

other sources of entities, explaining what will happen when we move an entity from such

a source to cache (we never move an entity to Couchdb unless it is cached).

From cache to couch and back

We aim to keep the revision of an entity in cache equal to its serialisation in Couchdb. In

moving entities in and out of Couchdb, we accomplish this by

• Storing the revision that comes from Couchdb in the entity in cache (all these

entities must have a Revision instance; Revision is a class defined in the

Couchdb package).

3

• Sending the revision in cache – if it exists! - as a query parameter to Couchdb.

• Putting the new revision string that comes from Couchdb after storing the

serialisation, back in the entity in cache.

Creation

When an entity is created and stored in cache, it obviously has no revision. It has never

been sent to Couchdb! This situation is easy and requires no special handling. The function

saveEntiteit (or saveEntiteit_, a variant that takes both an id and an entity) handles

this case by not sending a query parameter with revision information.

Parsing an Arc model

An Arc model is serialised as a DomeinFile. A DomeinFile has a Revision instance. A

DomeinFile will be stored in Couchdb. Typically, parsing and storing an Arc model is an

activity for the modelling user; end users just download DomeinFiles and start using them.

Obviously, a freshly parsed Arc model has no revision. However, the modeller may have

parsed that file before and so there may be an equally identified DomeinFile in Couchdb

with a revision!

Before moving such a parsed DomeinFile from cache to Couchdb, we have to update its

revision by looking in Couchdb whether it exists and, if so, taking its revision. This is

handled in the function Perspectives.DomeinCache.saveCachedDomeinFile.

Parsing a CRL file

Like parsing an Arc file, parsing a CRL file is a modellers’ activity. Or, rather, it is a

programmers activity. Implicitly, when parsing an Arc file, a modeller may parse a file

with the same name (but with the extension .crl instead of .arc) with it, adding entities to

the cache (Context- and Role instances).

Such entities may have been stored in Couchdb before, e.g. because the programmer had

parsed the file before. Like with parsing an Arc model, we have to update the revisions of

these entities in cache before saving them in Couchdb. This is handled in the function

Perspectives.LoadCRL.loadAndSaveCrlFile.

Starting to use a model

A user may decide to start using a model; this involves downloading a DomeinFile from a

repository. Later on, he can decide to no longer use that model. And then even later on,

he may again start using the model. This entails that, if we again download the DomeinFile

from the repository, we have to update its revision in cache before saving it (again) to

Couchdb.

4

Moreover, a DomeinFile contains a number of Context- and Role instances. These have no

revision (or, rather, their revisions need to be ignored). However, as a DomeinFile may be

taken into use multiple successive times while these instances have not been removed.

Also, the entities taken from the DomeinFile on a previous occasion may have been

changed in the meantime. So we prefer the version in Couchdb over the version in the

DomeinFile. This is handled in the function

Perspectives.Extern.Couchdb.addModelToLocalStore.

Notice: we will need to do better if we want to update a model!

External model descriptions

In order to show the user the models that are available on a repository, we query it to

send us a list of the external roles of the descriptions of these models. These role

instances are cached. Now some of the available models may have been taken into use

before and this means that the corresponding external role of its description is already in

Couchb. If this is the case, we prefer the version that is in Couchdb over the one that

comes from the repository. This is handled in the function getExternalRoles in package

Perspectives.Extern.Couchdb.

Receiving a UniverseContextDelta or a UniverseRoleDelta

It probably may happen that we receive a UniverseContextDelta for a Context instance

that is already in Couchdb. As of the time of writing of this document, this case has not

yet been implemented.

	Introduction
	Overview of the flow of entities and documents
	Sources
	Destinations
	Why do PDR instances not share version information?

	Maintaining consistent revisions
	From cache to couch and back
	Creation
	Parsing an Arc model
	Parsing a CRL file
	Starting to use a model
	External model descriptions
	Receiving a UniverseContextDelta or a UniverseRoleDelta

