
Perspectives across context 
boundaries 
Joop Ringelberg 06-11-19 Version 1 

The importance of context 

Context introduces privacy in the sense of providing a comprehensive view of participants. 

As a first approximation, we can provide this with the requirement that a user role can 

just have perspectives on other roles in his context. However, this requirement is too 

strict. Context roles and external roles of contexts broaden the horizon of user roles in a 

limited way, but it is not enough. 

By incorporating calculated roles in the language, we provide access to a wider 

environment around the users’ context. All contexts that can be reached through  some 

role path can be consulted. This raises the issue of privacy, however. At the very least, a 

user participating in some context should be informed about who else can consult (parts 

of) that context. 

Perspectives across borders 

Let’s examine Party, as modelled below. Guest has a perspective on a calculated role: 

 case: Party 

  user: Guest 

   perspective on: Giver 

  user: Giver = WishInParty >> binding >> context >> Giver 

  context: WishInParty filledBy: Wish 

  case: Wish 

   user: Giver 

We could write this more compact by losing the calculated Giver role in Party: 

 case: Party 

  user: Guest 

   perspective on: WishInParty >> binding >> context >> Giver 

  context: WishInParty filledBy: Wish 

  case: Wish 

   user: Giver 

Notice how we moved the calculation of Giver to the perspective declaration. In a 

diagram, we just draw a line across context boundaries. There is, however, a condition on 

such lines: there must be a valid path from the source context (Party) to the destination 



2 

role (Wish). In our example the path exists because we have bound Wish in the context 

role WishInParty.  

Such a line would be a command to the system to compute the path. We assume the 

system would notify the modeller if no path exists. In future versions of the system we 

could allow the textual modeller to command the system to find a path, too, for example 

with this notation: 

 case: Party 

  user: Guest 

   perspective on: ... Giver 

  context: WishInParty filledBy: Wish 

  case: Wish 

   user: Giver 

Computed user roles 

There is another way to interpret this example. We might say that there is, in the case 

type Wish, a calculated user role. Let’s call it GuestInWish: 

 case: Party 

  user: Guest 

  context: WishInParty filledBy: Wish 

  case: Wish 

   user: Giver filledBy: Guest 

   user: GuestInWish = External >> binder WishInParty >> context >> 

Guest 

    perspective on: Giver 

The computation of GuestInWish proceeds in four steps: from Wish we move to its 

external role, then to its binding role instance of type WishInParty, then to its context 

and finally to the instances of the Guest role. 

Notice that we’ve given this calculated user role a perspective on Giver. 

Transparency is restored, with this model. At a glance we see who can consult the roles of 

Wish. At a glance, because we only have to examine the definition of Wish itself. We don’t 

have to scan other context definitions for calculations that provide access to Wish’s roles.  

Equivalence 

The models given above are completely equivalent. There is no difference, in effect, 

between a perspective on a calculated role, or a perspective on an enumerated role by a 

calculated user role. The system should be able to transform one into the other.  

A difference might arise when we interpret the perspectives to screens. On first sight, one 

might think that in the original model, the Guest would consult Wish in the screen that is 



3 

created for him for Party. In contrast, with the second model, he would be able to open a 

screen for Wish itself. Whether such decisions on screens should be decided by a choosing 

one of the two otherwise equivalent models, is an open question. Modelling process logic 

might dictate a course of action that runs contrary to user experience design. 

Transparency restored 

One way or another, the equivalence between both ways of modelling allows us to create 

a system that can, in principle, show a participant in a context who else can consult that 

context, however it is modelled.  

We can imagine a query function that computes all user roles in a context – including the 

calculated users1.  

Assignment 

Up till now we’ve written in terms of consulting perspectives on roles outside the context. 

Do the conclusions extend to changing those roles (and their property values)? We think 

so.  

A primary example is the common case where a user role becomes another role. In the 

Party example, Guest can fill Giver. That is, he can bind the role instance that 

represents himself in Party, to a new instance of Giver in Wish. Guest becomes Giver. 

There is – in this case – a restriction on this perspective, however, and that is that a Guest 

can only bind himself in Giver. Otherwise, we would have the situation where any Guest 

can make another Guest give a present! But, again, this is particular to the become Verb. 

Becoming is almost the reason for perspectives on calculated roles (or for calculated 

users): without them, a model like Party-Wish would become very clumsy, as Guest would 

need a role in Wish before being able to fill the Wish role. An infinite regression threatens 

here, only to be broken by another user role. Becoming is an elegant solution for this 

problem. 

We can extend these powers of change across context borders to other perspectives. For 

example in the bot rule below: 

 External >> binder Role1 >> context >> Role2 >> Prop1 = true 

Here, the bot reaches outside its context to set a property on a role on its enclosing 

context. The left hand side of the assignment is a path; the property value on the end of 

that path is set to true. 

 
1 This function is necessary for synchronization, too. 



4 

In general, any perspective with Change powers on a calculated role allows the user 

having that perspective to modify that calculated role. These are great powers, indeed! 

With them come responsibilities for the modeller. 


	The importance of context
	Perspectives across borders
	Computed user roles
	Equivalence
	Transparency restored

	Assignment

