
Parsing, compiling and using models
Joop Ringelberg 10-04-20 Version: 1

Introduction

A model is in effect a collection of types. A model also introduces a namespace. Contexts

and roles introduce namespaces, too:

• a context gives its name to the roles and actions defined in it;

• a role gives its name to the properties and views defined in it.

A context can also contain other contexts (notice we’re talking types here!) and so

provides a namespace to them. This might lead us to think that a model is just another

context. And it is. However, a model is a context without a context. In other words, it is

the root of a namespace hierarchy. We call such a context a Domain. So a Domain is a

context that contains all other types in the model, recursively.

However, a DomeinFile – derived from a Model’s source text – is not just a context. To

start with, it is represented differently. In Perspectives, it plays the role of a package. All

types (contexts, roles, properties, views, actions) are pulled up to the surface and are

available in maps as members of a record. The PDR uses this representation to quickly look

up any type.

Furthermore, Instances can be packaged with a DomeinFile, indeed, an instance of

model:System$Model must be packaged with it. The external role of this context instance

has properties that give its readable name and description, and the url where it resides (a

repository on the open internet).

Last, but not least, a DomeinFile/Package lists the other DomeinFiles/Packages it’s

definitions depend on, in the sense that they refer to types defined in them.

To sum up:

• a Model is a collection of types;

• a Domain is the root context of a Model, having no context itself;

• a DomeinFile is a Package, the physical transport format of the represented types

constituting the model.

Constructing a DomeinFile

Perspectives models are written in the Perspectives Language1. A model file is parsed and

transformed into a DomeinFile in a process consisting of three phases. A DomeinFile is a

data structure that lends itself to easy translation into JSON. It contains the type

1 Previously called ARC language, from Action Role Context. This name is frequently used in the
Perspectives Source code files.

2

definitions as defined in the model. It also contains an unparsed CRL file holding the

instances that belong to the model, such as the model’s description.

In this text we give a high level overview of

• the various transformation phases;

• the interdependencies of models;

• how to put a model in operation for a PDR installation;

• the treatment of the model instances, emphasising indexed names.

Transformation phases

Parsing

The raw source text of a model is parsed with the functions in the module

Perspectives.Parsing.Arc. The output is an Abstract Syntax Tree in terms of the data

structures defined in the module Perspectives.Parsing.Arc.AST.

Expression parsing

Query expressions form a substantial subset of the Perspectives Language. They have their

own parsers, in Perspectives.Parsing.Arc.Expression. These functions create an AST

in terms of the data structures defined in Perspectives.Parsing.Arc.Expression.AST.

Assignments (as in the right hand side of bot rules) are treated by the expression parser,

too.

Phase Two

The next step – simply called ‘Phase Two’ – is performed by functions in module

Perspectives.Parsing.Arc.PhaseTwo. It is only now that a DomeinFile is created.

During this phase, the identifiers of the definitions that have been declared, are qualified

with namespaces. Contexts and roles are both namespace-giving (embedded definitions

are scoped with the name of their embedder). However, references to definitions are left

untreated, because a reference may be made in the text before that what it refers to, is

fully qualified (the so-called forward reference problem). In this phase we also collect the

models that the model under treatment depends on (its ‘referredModels’).

During this phase, we also expand all prefixed names. Prefixed names are shorthand for

qualified names, making life easier for modellers. Each prefix must be defined for some

(context) scope. Phase Two expands all these names2. Prefixes as such are lost beyond

Phase Two (but the namespaces they refer to are saved in referredModels).

2 A full treatment of this subject is given in the text: Expanding prefixed names.

3

Phase Three

It is only in the third phase that references are qualified. These are:

• the object and indirect object of actions

• the binding of role definitions

• references to properties (in views)

• references to views (in actions)

• the type of value that is returned from a computed role.

Furthermore, Phase Three is responsible for several other processes:

• expression compilation

• inverted queries for properties and roles

• qualification of binding to a Calculated role

• rule compilation

Expression compilation

Expressions in the source text have, up till Phase Three, been stored as abstract syntax

trees. Now that all identifiers are fully qualified, we can look up, for any identifier used in

an expression, what its type is. Only now can we compile an expression into a description

of a function that can be executed runtime.

Let’s step back. A query expression is used to define a so-called Calculated Role or

Calculated Property. When an end user requests the value of a Calculated Role through

the Api, a function is executed on a context instance and a set of (Enumerated) role

instances is returned. It is these functions whose descriptions are compiled in Phase

Three.

A QueryFunctionDescription is a data type (defined in

Perspectives.Query.QueryTypes) that gives details of a function’s domain and range

and how it should be executed. This can either be a primitive (implemented as a

Purescript function) or a composition of QueryFunctionDescriptions. As queries consist

for a large part of traversing from contexts to roles and vice versa, we need to be able to

look up the type of each role. Hence this compilation can only be done in Phase Three.

The module responsible for this compilation is

Perspectives.Query.DescriptionCompiler.

From the description of a query function, a Purescript function is computed with the

functions in Perspectives.Query.Compiler. This, however, is just in time compilation:

each function is compiled just before it is applied for the first time during a PDR session

(the compiled function is cached, so it is compiled only once during each session). In other

words, actual query function compilation is a run-time process and does not happen in

compilation time (the subject of this text).

4

Inverted queries for properties and roles

A big responsibility of the PDR is to make information available to those users that are

modelled to have a perspective on it. Concretely, if user A adds a role instance to a

context instance (as an example), all peers in that context with a perspective on that role

should be informed. To this end we calculate, in Phase Three, inverted queries that

compute in run time, from a role instance, the peers that should be informed. Whenever a

role instance is added (run time), we run the appropriate queries and then add a Delta to

a Transaction to be shipped to those peers. In order to prevent misunderstanding:

• inverted queries are constructed during Phase Three (compilation time)

• inverted queries are executed during run time.

Qualification of binding to a Calculated role

A role can be defined with a restriction on the type of roles that can be bound to it (that

can fill it). This restriction is often in terms of another Enumerated Role, but may be in

terms of a Calculated Role. But the type of a Calculated Role is nothing but a composition

of types of Enumerated Roles (it is an Abstract Data Type consisting of Sum and Products).

So, really, we need to record the type of the Calculated role as the restriction on the

binding of such an Enumerated role.

But the type of a Calculated Role is the range of its compiled expression. Hence, only

after the expressions of a model are compiled, can we really qualify the binding of an

Enumerated Role restricted with a Calculated Role.

This step finds all such roles and sets the restriction on their bindings.

Rule compilation

Rules consist of a condition and assignments (where these assignments may be in the body

of a let-expression). In this step we compile the condition (just an expression) and the

assignments. As with expressions, an AST representing an assignment is turned into a

QueryFunctionDescription3.

Interdependencies of models; packages

We’ve mentioned in the introduction that a package (DomeinFile) lists the models that the

model it represents depends on. How do we deal with these dependencies?

3 Strictly speaking we should separate expressions (that just have a value) from assignments (that
change state). However, their treatment is sufficiently similar to justify lumping them together in
the same modules.

5

Consequences of interdependencies for modellers

A modeller is a PDR user who creates models. He uses functions of the PDR that ‘ordinary’

end users do not: to parse and compile a model source text to a DomeinFile. With special

powers come special responsibilities. In this case that means that a modeller must take

care that he has installed, for his PDR, for local use all models that his model depends on.

During compilation these models are referred. Indeed, when we have IDE support, these

models will be consulted to provide type information on referred types.

Consequences of interdependencies for end users

An end user cannot be expected to inspect a model’s source text, find the other models

that it depends on, and download them from a repository before downloading the original

model. We have to take care of these dependencies for them. So, on putting a model into

operation for some PDR installation, all dependencies must be downloaded automatically

first. We will see a little more detail of this in the next chapter.

Putting a model into operation for a PDR installation

To be able to use a model, a user should add the package that contains the models’ types

to his PDR installation. That is, he should download the package file from some repository

and store it in his local database of packages. The function that takes care of this is

addModelToLocalStore from the module Perspectives.Extern.Couchdb4. We highlight

several facets of this function.

Add model instances

As stated before, a package contains (the text of) a CRL file. This file holds a number of

instances, usually of the types defined in the package. It must contain an instance of

sys:Model, describing the model itself. The embedded CRL file is parsed and the

instances are added to the users’ local database.

Customize indexed names

A model may both declare and use indexed names (see the text Indexed Names for more

detail). Indexed names, such as sys:Me, must be replaced by personalised identifiers

before they can be used. We must distinguish the occurrence of an indexed name in the

model source text from that in a model instance.

In the type definitions, indexed names only occur in queries (calculated roles and

properties, conditions of actions, right hand sides of binding in a let expression, right hand

4 This module makes functions available in the namespace model:Couchdb, as external core

functions that can be executed by callExternal and callEffect.

6

side of an assignment expression). Replacement is done when the query is executed – run

time.

However, an indexed name in instances that come with a model, must be replaced before

that instance is stored in the users’ local database. As an example, think of a role instance

that is filled with sys:Me. Before that instance is stored, its binding should be replaced by

whatever identifier is used to identify the user who ‘owns’ the PDR installation.

Moreover, the replacement should be remembered in run time. As the query interpreter

executes a step that is, for example, sys:Me, it should look it up and find the unique local

replacement for it. How do we set up the lookup table?

This is achieved by the requirement that the modeller should bind an instance of each

indexed type in the model description (remember that the model description is an

instance of sys:Model, a mandatory instance packaged with a model). Here is an

example, take from model:System itself:

 sys:Model usr:PerspectivesSystemModel

 extern $Name = "Perspectives System"

 extern $Description = "The base model of Perspectives."

 extern $Url = "http://127.0.0.1:5984/repository/model%3ASystem"

 $IndexedContext => sys:MySystem

 $Name = "MySystem”

 $IndexedRole -> sys:Me

 $Name = "Me"

Notice how sys:MySystem (an instance of the indexed context type

sys:PerspectivesSystem) and sys:Me (an instance of the indexed role type

sys:PerspectivesSystem$User) are bound in usr:PerspectivesSystemModel.

Run time, the PDR retrieves all instances of sys:Model$IndexedContext and

sys:Model$IndexedRole from the local database and constructs a table from the indexed

names to the customised identifiers (remember that the indexed names themselves have

been replaced by unique identifiers before the instances were added to the users’ local

database!).

Add new indexed names

Indexed contexts and roles introduced by the model will be added to the table of all

indexed names that the PDR has compiled on startup.

Set `me` and `isMe`

The PDR keeps track of a number of computed properties for the sake of efficiency. One

of these is the me member of a context instance representation; related is the isMe

Boolean property of a role instance representation. The latter is true if the role represents

7

the current (owning) user; the former is the role in the context instance that has an isMe

value of true. (for more details, see the text Overview of state change mechanisms).

After parsing the CRL text with instances, the PDR computes the value of me and isMe for

each of them.

Retrieve dependencies

A model may list other models whose types are used in its definitions. These dependencies

should be loaded before the models’ instances are processed. Currently, the PDR supposes

that model dependencies are available from the same repository as the model itself. We

may need to change that in the future. The most likely way to do so seems to be to store

the repository location with the model name as a dependency (the repository name must

be known to the PDR of the modeller, as it must have a local copy of each of the

dependencies).

Developing and testing

Tests based on model:System

A test that requires types defined in model:System should be run in an environment where

the test user has that package in his local model database, and the model instances in his

instances database. So the test needs to put that model in operation by calling

addModelToLocalStore. We will assume that this model is stable and is stored in the

repository. Cleaning up after the test should involve removing the package from the local

model database and removing its instances, too5.

We introduce the function withModel to that purpose, defined in Test.Perspectives.Utils.

withModel will fetch the model from the repository, add and customise model instances,

run the test and clean up afterwards.

Testing models

Instead of relying on a (supposedly stable and functional) model, some tests involve

aspects of a model itself. The tester can work with various functions to load a source file.

Roughly, there are two independent dimensions that these functions vary on:

• to load instances, or not;

• to save to the database, or just cache.

Notice that the tester needs to load model dependencies in his test code. The functions

that parse and compile ARC and CRL do not load dependencies!

5 We have two variants: withModel will clear the user database, withModel’ leaves it as it is.

8

The full set of functions is:

 Load CRL Do not load CRL

Cache loadCompileAndCacheArcFile loadCompileAndCacheArcFile’

Save loadCompileAndSaveArcFile loadCompileAndSaveArcFile’

	Introduction
	Constructing a DomeinFile
	Transformation phases
	Parsing
	Expression parsing

	Phase Two
	Phase Three
	Expression compilation
	Inverted queries for properties and roles
	Qualification of binding to a Calculated role
	Rule compilation

	Interdependencies of models; packages
	Consequences of interdependencies for modellers
	Consequences of interdependencies for end users

	Putting a model into operation for a PDR installation
	Add model instances
	Customize indexed names
	Add new indexed names
	Set `me` and `isMe`
	Retrieve dependencies

	Developing and testing
	Tests based on model:System
	Testing models

