
Overview of state change mechanisms
Joop Ringelberg 15-02-20 Version: 2

Introduction

Perspectives has straightforward declarative semantics, explained elsewhere1. Program

use proceeds by changing that declarative state. In other words: the set of facts kept by

Perspective users changes. In this text we give a high-level overview of the techniques

involved in dealing with that state change, in order to preserve the declarative semantics

in each new state. Where appropriate, we give pointers to other texts that have been

written on the subject.

Where do changes come from? Ultimately, they come from the users of Perspectives. Keep

in mind that there is a Universe of facts collectively tended to by many users. Each user

‘sees’ facts within his (or her) own horizon. Horizons overlap but are never equal.

When thinking about the origin of changes that arrive in the PDR, we must distinguish

between those made by the owning user and those made by his peers. This is because it

(the PDR) must send the owning users’ changes to his peers – but just absorb and integrate

send changes by those peers.

Finally, we must remember users can have bots that act on their behalf.

So when we think about the implementation of the PDR, we have to reckon with three

sources of changes:

1. The API that enables a client program to translate the owning users’ actions into

updates;

2. The rules of the owning users’ bots, that make changes on his behalf;

3. Incoming transactions with changes made by peers of the owning user.

The first two translate into the application of a limited set of update operations. The third

translates into incoming Deltas, where each Delta describes an atomic change.

Where do Deltas come from? They are created by the same update operations.

Five responsibilities

To preserve the declarative semantics, the PDR must recompute requests by client

programs sent in through the API. Clients can request neighbouring nodes in the network

of context- and role instances, as detailed in Implementing the Functional Reactive

Pattern. A client should be informed of a change to those parts of the network it has

requested (clients are said to have subscribed to parts of the network). Now it is

important to realise that some of the relations between nodes may be calculated. We call

1 See Semantics of the Perspective Language.

2

a role calculated if it is retrieved by a query expression (see Perspectives Across Context

Boundaries). So it may happen that part of the network traversed by the query engine to

compute a role may have changed, even if the nodes that ended up in the query result

have not. In such cases, the query must be re-run in order to be able to inform the client

about the new declarative state: the selection of end nodes is likely to have changed. This

is the first responsibility of the PDR.

Secondly, a change might imply that a bot rule must be triggered. Rule conditions are

Boolean queries. This is similar to the situation with the client requests. However, rules do

not make an explicit request. Models may contain many rules; in theory we need to

evaluate them all after each change. The challenge is to create an efficient mechanism

that prevents this, yet fires all rules whose conditions have changed.

Third, the PDR must find out where to ship the Deltas that arise from the update

functions. Whom should we send a particular Delta? A first approximation is: to anyone

who has a perspective on the changed node, as described by the Delta. But, again, as with

the client request subscriptions and the rule triggering, queries complicate the matter. A

change may happen in some context that user A has no role in, but that is passed through

by a query for a calculated role that A has a perspective on.

Fourth, obviously, the PDR should hold on to changes. They should persist from session to

session. Persistence relies on Couchdb and on a cache in memory.

Fifth and finally, the PDR keeps a record for each context, telling it what role instance

represents the owning user. Many computations depend on that information, so it is

prudent to keep a permanent record. This, however, is merely a matter of efficiency; we

could do without. The bookkeeping is simple: for a context we record which role instance

represents the owning user (dubbed me), and on that role instance we have a Boolean

property isMe.

To sum up and give compact names to these five responsibilities, we have:

• request updates

• rule triggering

• synchronisation

• persistence

• current user computation.

Mechanisms

We use various mechanisms to shoulder the five responsibilities.

3

Request updates: dependency tracking

A query is in essence a series of steps through the network of context- an role instances2.

A step is one of the five fundamental moves through the underlying network:

• from role instance to its context;

• from a context to the instances of a particular role type;

• from a role to its binding

• from a role to roles that bind it

• from a role to values for a particular property.

Each step is carried out by a simple function. It records its own application. A client

request through the API also leads to application of one of these functions. In other words,

we can equate each client request, whether it is just a request for the binding of a node

or the value of a complex calculated role, with a query3. The recorded steps are

associated with a particular client request.

A Delta4 also corresponds to a step. So when we have a Delta, we can look up what client

requests are affected by that Delta and recompute them.

Rule triggering: inverting queries

Even though a rule condition is just a query (with a Boolean result), we cannot reuse the

dependency tracking mechanism. This would require us to evaluate all rule conditions at

least once. The computational costs may be considerable, especially when we realise that

most context instances are not loaded into memory, for any given session. In order to

evaluate each rule, we should, indeed, load everything in memory and that is something

we have taken great pains to avoid in the Perspectives implementation.

So another mechanism is necessary and we have found it in running the rule conditions in

reverse. This is explained in detail in the text Query Inversion. Briefly, it consists of

inverting conditions so they run from each node that would be visited, to the context that

holds the rule. These inverted queries are stored with role- and property types. When a

Delta comes into effect, we look up the inverted queries for the resource in question and

run them to find affected contexts. Then we run the rules for the owning user in those

context instances5.

2 See Implementing the Functional Reactive Pattern and State and Dependency Tracking for more
detail.
3 To prevent misunderstandings: the client can also order changes to the network through the API;
however, in this context we will not call them ‘requests’.
4 We use Delta and ‘change’ as synonyms in this text.
5 Inverted queries are stored with the user type(s) that they are relevant for. In the case of a rule,
this means the user role that the bot is for. Finding the owning user is just a matter of lookup,
anyhow.

4

This mechanism will run rules even for contexts that do not reside in memory as the Delta

takes effect.

Synchronisation: inverting queries, too

Inverted queries give us a solution for computing users that should receive a Delta, too. To

implement it we do not just invert rule conditions, but, indeed, each query defined in the

model. Remember that they define either (Calculated) roles or (Calculated) properties6.

Requesting a Calculated role is trying to ‘move’ from a context to the instances of that

role. Now, because the role is calculated, retrieving the instances will in general involve a

number of moves, possibly outside the context of origin. When we invert those steps,

where do we end up? In the context of origin, of course.

We invert the calculation for a CalculatedRole in design time (on processing a model).

Doing so, we store the user types that have that role in their perspective, with the

inversions. So when we later (in run time) run the inverted query and end up with some

context instances, we can immediately look up the instances of those user types. They

should receive the Delta.

Persistence

For persistence we have a number of functions that cache in memory and store in

Couchdb. This task is straightforward.

Current user computation

The User role of model:System represents the owning (current) user7. Consequently, any

role instances filled by this role represent the current user, too. This definition can be

construed recursively.

For now, we hold that a context instance can have only one role instance that is its

current user. In other words, a user should take only one role in any context. This may

change in the future, as we extend the language.

6 Or the condition of a rule, or the value expression in a let body or its bindings.
7 Notice that these are indexed concepts! All users are the owning user with respect to some PDR
installation. While doing its work, that user is the ‘current’ user for that PDR.

	Introduction
	Five responsibilities
	Mechanisms
	Request updates: dependency tracking
	Rule triggering: inverting queries
	Synchronisation: inverting queries, too
	Persistence
	Current user computation

