
Optimizing inverted query application
Joop Ringelberg 23-06-20, 31-01-22 Version: 2

Introduction

In this text we describe an optimization of the functionality that applies inverted queries.

We apply inverted queries for two reasons:

1. To find resources whose state must be evaluated after a modification to the

represented state;

2. To find users who must receive a Transaction with the said modification.

The optimization we describe does not change the functionality.

Problem statement

Referring to Figure 1, we see that onRoleDelta_binder of r2 holds two inverted queries.

As the first step of the inverted query is skipped because of the cardinality of the binder

operation, those two are:

 binder r5 >> binding context I

 context II

Now consider a RoleDelta with binder (id) equal to (an instance of) r1 and binding equal

to (an instance of) r2. It is obvious that only inverted query II should be applied (the new

path will never lead to c4, as it must include the new binding between r1 and r2).

The query evaluation mechanism currently is implemented in such a way that applying II

to r1 will give no results, so the semantics is preserved. We can safely skip this step,

however.

Solution

We will solve the problem by storing queries in onRoleDelta_binder not as an Array, but

as a map indexed by the type of the range of the original binder step (the step that is

actually removed from the inverted query before it is stored in onRoleDelta_binder).

Runtime, we then use the type of the binder in the delta to index the queries in

onRoleDelta_binder so we only apply the right inverted queries.

2

Figure 1. Two inverted queries stored with onRoleDelta_binder in r2.

Multiple types (Role Aspects)

In general, r4 may have multiple types1. We should index the collection of inverted

queries stored with (type) r2 with all types of (instance) r4.

1 We jump somewhat opportunistically from instance to type with respect to the roles in this
example. Now we mean to understand c4 as an instance, having multiple types.

	Introduction
	Problem statement
	Solution
	Multiple types (Role Aspects)

