
Module imports for InPlace
Joop Ringelberg 26-06-20 Version: 1

Introduction

InPlace (project perspectives-react-integrated-client) imports a number of other

Perspectives projects. In this text we provide an overview and describe how these projects

are built into modules by Webpack. We also describe how these projects externalise

common dependencies and what has been done to make them available.

Static and dynamic modules

Except for the screen modules that are loaded dynamically (through the use of react-

loadable (https://github.com/jamiebuilds/react-loadable), all dependent modules are

packed by Webpack. It turns out that dynamic loading severely limits our options for

externalisation: only a value on the global scope will work.

Module relations

Module import relations form a straightforward tree:

• InPlace

o core

▪ perspectives-proxy

o perspectives-proxy

o perspectives-react

▪ perspectives-proxy

Now if we add some non-perspectives dependencies that occur throughout the tree, we

get:

• InPlace

o core

▪ perspectives-proxy

o perspectives-proxy

o perspectives-react

▪ perspectives-proxy

▪ React

▪ prop-types

o React

o ReactDom

o react-bootstrap

https://github.com/jamiebuilds/react-loadable

2

Dependencies in green are externalised by their importing modules. This is a Webpack

concept. It allows us to decrease output bundle size because we state that a particular

module will be provided in the environment that consumes the module.

Perspectives-proxy: a special case

Perspectives-proxy is a stateful module. It builds and keeps a connection to the core. We

must only have a single instance of perspectives-proxy in a running Perspectives program,

hence we externalise it in all modules except for the topmost one (being, in this case,

InPlace).

Making externalising work

We’ve encountered some restrictions in the way we can externalise (perspectives)

modules. First we list how we have Webpack build the various modules:

Module name libraryTarget value

core commonjs2

perspectives-proxy umd

perspectives-react commonjs21

Webpack configuration can hold a key libraryTarget

(https://webpack.js.org/configuration/output/#outputlibrarytarget) This determines the

type of output that is produced, among them various module systems. Type umd

(https://github.com/umdjs/umd) translates to commonjs, amd and a global variable.

While this is the way that these libraries are made available, below we list the way they

are externalised by their consumers:

Module name Imported by Externalised as

perspectives-proxy core, perspectives-react commonjs, commonjs2, amd,

root

react perspectives-react commonjs2

prop-types perspectives-react commonjs2

react Perspectives-react-
integrated-client

commonjs2

Why externalise ‘react’ from perspectives-react-integrated-

client?

It seems as if the top-level module should not externalise react; otherwise, where does it

come from? However, if we have Webpack include react into the bundle for perspectives-

react-integrated-client, it will actually be instantiated twice in the renderer/browser.

1 We found that giving perspectives-react a target of umd leads to a problem in InPlace.

https://webpack.js.org/configuration/output/#outputlibrarytarget
https://github.com/umdjs/umd

3

This is because a module like perspectives-react (but also react-dom, that we have no

control over!) actually obtains react through the require function of Electron. This latter

function reads the react code from the node_modules directory.

So while the dependencies that have externalised react obtain it through the Electron

module system, the main application obtains it from its own bundle. Both cache the react

module – separately! The Webpack bundle has a ‘runtime’ that has its own exclusive

cache, separate from the cache kept by Electron. Hence, we end up with two copies of

react in memory. And that gives rise to problems with hooks2.

While externalising react from the top-level is no problem for the Electron version, it

might cause a problem with a browser-based version.

Externalising modules for screens

The project perspectives-screens produces modules with screen components for various

models. There is a module for each model; each module holds one or more screens.

We have Webpack compile the module with libraryTarget var. We externalise the

following modules, all in the form of a global variable:

• react

• perspectives-react

• react-dom

• react-bootstrap

• @primer/octicons-react

• prop-types

In order to make this work, we have to put these modules in variables on the global scope

in InPlace. This is done in the module externals.js.

2 https://reactjs.org/warnings/invalid-hook-call-warning.html

https://reactjs.org/warnings/invalid-hook-call-warning.html
https://reactjs.org/warnings/invalid-hook-call-warning.html

	Introduction
	Static and dynamic modules

	Module relations
	Perspectives-proxy: a special case
	Making externalising work
	Why externalise ‘react’ from perspectives-react-integrated-client?
	Externalising modules for screens

