
Copyright 2019 Joop Ringelberg and Cor Baars

Introduction to the Perspectives
language
Joop Ringelberg 25-10-19 Version: 2

Introduction

This text gives an introduction to the Perspectives language. Appendix I contains the

complete specifications of its syntax. Appendix II is an informal semantics for PL.

A domain with some roles

A model is collection of types. It always starts with the declaration of a Domain:

domain Taxi

A model name always has the prefix model, followed by a name starting with an uppercase

character. All names the modeller creates for his types must start with a capital1.

Role: user and thing

Roles play a significant part in Perspectives models. A role is minimally declared as

follows:

domain Taxi

 user Driver

The keyword user signifies a role that is played by a person. We have keywords for other

kinds of roles:

domain Taxi

 user Driver

 thing Taxi

A Taxi is a thing that plays a role – but it is not a person.

Property

An important property of a taxi is how many passengers it can carry:

domain Taxi

 user Driver

 user Passenger

 thing Taxi

1 See Appendix One for a detailed description of allowed names.

Copyright 2019-2021 Joop Ringelberg and Cor Baars
2

 property NrOfSeats

Attributes of properties; range

We should have declared NrOfSeats in this way:

 property NrOfSeats (mandatory, relational, Number)

With the keywords mandatory, relational and Number in parentheses behind the name

of the property we further characterise that property. The first two we call attributes of

the property. A mandatory property must have at least one value for each role instance. A

relational property can have more than one value. By default, properties and roles are

functional.

With Number we specify a range for the property. In this case we have a numerical

property. Besides Number, other options are Boolean (true or false), String and Date. If

we leave out the attributes and range, the following default values are assumed: not

mandatory, functional, String.

Attributes of roles

Roles have the same two attributes:

domain Taxi

 user Driver

 user Passenger

 thing Taxi (mandatory)

 property NrOfSeats (mandatory, Number)

A mandatory role must have an instance; a functional role can have only one instance.

Instead, one might stipulate a role to be relational: this means that it can have many

instances. For example:

domain Taxi

 user Driver (mandatory)

 user Passenger (not mandatory, relational)

 thing Taxi (mandatory)

Passengers are not mandatory (however much the taxi driver might like that!) and there

can be several passengers inside a taxi.

If we leave out the attributes of a role, by default it is constructed as not mandatory and

functional.

Perspective

User roles have a Perspective on other roles.

domain Taxi

Copyright 2019-2021 Joop Ringelberg and Cor Baars
3

 user Driver

 perspective on Passenger

 user Passenger

 thing Taxi

By giving the Driver a perspective on the Passenger, we arrange that the application we

model will provide a (graphical user interface) screen for the Driver. What will the

Driver be able to see? If we don’t specify otherwise, all properties that Passenger has.

Notice that our application, as it stands now, can only be used by the Driver. Even though

Passenger is a user Role, it has no Perspective on anything, so no screens are provided to

persons playing the Passenger Role..

Let’s be more precise about what the Driver will see.

View

We can detail a Perspective with a View

domain Taxi

 user Driver

 perspective on Passenger (PassengerDetails)

 user Passenger

 thing Taxi

Here, PassengerDetails is a View. A view is merely a list of properties of the role it is

defined on:

domain Taxi

 user Driver

 user Passenger

 view PassengerDetails (FirstName, FamilyName)

 thing Taxi

 property NrOfSeats (mandatory, Number)

Views are foremost important for their use in a perspective.

Roles can be filled

You may have noticed that we referred to two properties (FirstName, FamilyName). But

where do they come from? They are not declared with Passenger.

If we reflect for a moment, we see that these properties are not really properties of the

role Passenger, but of persons in general. It is not as if the driver says, when his

passenger enters his taxi: I will call you Betty. The passenger had a name beforehand!

So how do we model this situation? Below we specify that Passenger roles are played by

(filled by) a Person:

Copyright 2019-2021 Joop Ringelberg and Cor Baars
4

 user Passenger filledBy Person

Assuming that Person indeed has the properties FirstName and FamilyName, we would

now be allowed to refer to them from a View on Passenger.

So where does this person come from? We take it from some other model, let us call it the

PersonalDomain. In that model, Person is defined with the two properties:

Domain PersonalDomain

 user Person (mandatory)

 property FirstName (mandatory, String)

 property FamilyName (mandatory, String)

By filling the Passenger Role with Person, we make Person’s properties available in

Passenger. Hence we can define a View with those properties, as we’ve done with

PassengerDetails.

Don’t confuse View with Perspective!

A View is a list of properties of a Role. A Perspective gives a user role the ability to see

the properties of another role, as specified by some view (or all properties if no view is

given in the Perspective). But a Perspective is not only about seeing: it is also about

creating and changing, to name a few. We’ll come to that shortly.

Qualified names

We have one thing to fix, however, with our Passenger definition. Up till now we have

used simple, meaningful names for our roles. However, such names might well crop up in

other models, too: ‘Passenger’ would be a good name for an aviation domain, for

example. To prevent confusion, names are qualified with their domain. So really,

Passenger is named model:Taxi$Passenger. Notice the $ sign between the model name

and the role name: it separates the various segments of the qualified name.

Now this happens implicitly, most of the time. So we are allowed to write just Passenger

if no risk of confusion arises. However, on using a name from another domain, we have to

qualify it:

 user Passenger filledBy model:PersonalDomain$Person

This is quite a mouthful. Luckily, we have the means to abbreviate qualified names with

prefixes. So our full model could be written like this:

domain Taxi

 use per for model:PersonalDomain

 user Driver

 perspective on Passenger (PassengerDetails)

 user Passenger filledBy per:Person

 view PassengerDetails (FirstName, FamilyName)

Copyright 2019-2021 Joop Ringelberg and Cor Baars
5

 thing Taxi

 property NrOfSeats (mandatory, Number)

Verbs

A useful computer program usually allows its users (or at least some of its users) to change

things. And to create things and delete them. In Perspectives, we link these capabilities to

the Verbs of the perspectives. In our example, some user would have to enter the number

of seats of the taxi. Let’s assume it is the Driver. He must have a perspective that we

could describe as: the driver changes the number of seats of the taxi.

Now here is a very important principle: the Perspective of a user Role on another Role is

given by the Verbs the user apply to that other Role. So, really, a Perspective is a list of

Verbs! Consulting is just one of these verbs. You may object that you’ve not seen any

verbs in the perspective we’ve seen:

 user Driver

 perspective on Passenger (PassengerDetails)

We’ve specified what we would like to see of the Passenger (by giving the View

PassengerDetails), but not what we would like to do with it. However, this is a full

Perspective, because, by leaving out any further information, by default we include all

verbs.

Verbs come in two flavours: role verbs and property verbs. Role verbs allow the user

having the perspective a.o. to create a role instance or delete it and, importantly, to fill

it with another role.

Property verbs allow a user to give a property a value.

So our perspective above is, with respect to role verbs, equal to the one below:

 user Driver

 perspective on Passenger (PassengerDetails)

 all roleverbs

If we want to deny some of these verbs to a user, we can to list them:

 user Driver

 perspective on Passenger (PassengerDetails)

 excluding (Delete, Create, Remove)

this would be a better model, by the way, because the Driver should not be able to

remove the Passenger!2

We will come back to Verbs later, because there is a lot more detail we can specify about

them.

2 Client is King, after all.

Copyright 2019-2021 Joop Ringelberg and Cor Baars
6

Context

A role is tied to some context. A nurse is a nurse in the hospital; not while she is shopping.

Let’s introduce a context for the roles we’ve seen so far: the taxi ride.

domain Taxi

 use per for model:PersonalDomain

 case TaxiRide

 user Driver

 …

We simply indent all the lines we had so far to the right, under the new heading for the

TaxiRide. Nothing much changes, except for the qualified names: Passenger now is

model:Taxi$TaxiRide$Passenger. This stands to reason as the Passenger is now inside

TaxiRide.

A single context in a model is not very useful. Let’s introduce another:

domain Taxi

 use per for model:PersonalDomain

 case TaxiCompany

 user Personnel filledBy per:Person

 property EmployeeNumber (mandatory, Number)

 case TaxiRide

 user Driver filledBy Personnel

 …

Notice how we’ve pushed TaxiRide one stop further to the right, making it a subcontext

of TaxiCompany. We’ve also added who can be a Driver: the personnel of the

TaxiCompany. And, because we’ve stipulated that Personnel need be a per:Person and

we know that the latter has a FamilyName property, we can now also add a view on the

Driver, e.g. in order to be able to show his name to the Passenger (obviously we would

need to give Passenger a Perspective on Driver for this to work).

Furthermore notice that we’ve added an EmployeeNumber to Personnel. With all those

roles that fill each other, we have fine-grained control over where to register properties.

An employee number is not a personal property; neither is it particular to some taxi ride.

It is relevant in the context of the taxi company. However, if we wish to, we can make it

available (through some view) in the taxi ride context.

Properties of a context

From the perspective of the scheduling operator, it is important to be able to have an

overview of TaxiRides that have not yet finished. This we can model with a property of

the external role of the context. Think of a context as having an inside, and an outside.

Copyright 2019-2021 Joop Ringelberg and Cor Baars
7

It’s outside represents the context in other situations. To carry information, it can have

properties on its outside (i.e. on its external role):

 case TaxiRide

 external

 property Finished (mandatory, Boolean)

 user Driver filledBy Personnel

So now we have defined TaxiRide with an external property, for some operator of the

TaxiCompany to see. How do we go about providing this operator with a Perspective on

TaxiRides?

To prevent misunderstanding…

… we have to carefully distinguish between context types defined locally to some other

context type, and context instances actually appearing in another context instance.

Let’s explain with an example. Below is our full model, augmented with another line:

domain Taxi

 use per for model:PersonalDomain

 case TaxiCompany

 user Personnel filledBy per:Person

 property EmployeeNumber (mandatory, Number)

 context Rides filledBy TaxiRide

 case TaxiRide

 external

 property Finished (mandatory, Boolean)

 user Driver filledBy Personnel

 perspective on Passenger (FullName)

 user Passenger filledBy per:Person

 view PassengerDetails (FirstName, FamilyName)

 thing Taxi

 property NrOfSeats (mandatory, Number)

We’ve added a role Rides to TaxiCompany. Rides is a role, just like Personnel is a role.

The context keyword introduces a role, just like user and thing introduce roles. Only,

for context this role is filled by another context.

So why is this? We already had the case TaxiRide inside TaxiCompany. Why do we need

the role Rides?

We have come to this point without discussing the difference between types and

instances. Now we need the distinction. A model gives a lot of types. But when we ‘run’ a

model, we deal with instances of these types (running a model means: using the software

that we’ve specified with the model). When an actual person wants to order a taxi ride,

Copyright 2019-2021 Joop Ringelberg and Cor Baars
8

he will create a new instance of TaxiRide (by using the software, pressing a button for

example, and by entering some details).

This means that an instance of a TaxiCompany (let’s call them Unter) will accumulate

instances of TaxiRides. An operator working for Unter will inspect those rides and

monitor those that are still in progress.

However, on the type level, the type TaxiRide is contained within the type TaxiCompany.

The takeaway is:

1. case gives the declaration of a type of context, inside another context type

2. context gives the declaration of a role in a context, filled with a context.

Properties of a context, revisited

We’ve given TaxiRide an external property Finished. One way to think of this is that a

particular TaxiRide is represented by a role that has this property. We call that role the

External role of TaxiRide (of contexts in general). It is that External role that actually

fills the Rides role of TaxiCompany. Let’s define a View on it:

domain Taxi

 use per for model:PersonalDomain

 case TaxiCompany

 user Personnel filledBy per:Person

 property EmployeeNumber (mandatory, Number)

 user Operator filledBy Personnel

 perspective on Rides (ViewOnRides)

 context Rides filledBy TaxiRide

 view ViewOnRides (Finished)

We have provided a perspective for a new type of user, Operator, on Rides. The operator

cannot see inside the TaxiRide that fills an instance of Rides, but he can see its external

property Finished.

External Roles support us when creating programs, by providing a way of hiding

information. The operator doesn’t need know who is inside that taxi or where it started.

He wants to know whether it is finished (so he can schedule another ride for the driver).

Let’s calculate some things!

Continuing with the Operator, who is interested in the status of the TaxiRides, we

realise that seeing a long list of rides and a checkmark behind each of them saying

whether it is finished or not, does not make for a good user interface. At the very least,

we would like to be able present a list of just the rides that have not yet been finished. So

how do we create such a filtered list in Perspectives?

Copyright 2019-2021 Joop Ringelberg and Cor Baars
9

Calculated Roles

Let’s think of a name of such a list: UnfinishedRides. This is how we create a new type

of Role in TaxiCompany that is just what we need:

case TaxiCompany

 thing UnfinishedRides = filter Rides with not Finished

We call such a Role a Calculated Role. In contrast, Rides is an Enumerated Role. We have

at our disposition a number of functions and operators to calculate roles, filter being a

very important example. Filter takes a source – Rides, in our example – and a criterium.

The criterium is an Expression that has a Boolean value.

Some things are rather implicit in this filter expression:

1. what Rides do we mean? Sit back and reflect for a moment: there may be many

taxi companies and each would have instances of Rides. Surely we do not mean all

those instances! Instead, we want an operator to view just the unfinished Rides in

his own company.

So here is the rule: in a Calculated Role, the calculation starts at its context

instance. We can think of the source as an expression that provides a path starting

at a particular context instance, leading to some role instances. In this case, the

path consists of just a single step.

2. Similarly, we want to judge each role on it’s Finished property. Implicitly, the

criterium expression starts at each Role that is judged. Again, it is a path leading

from that Role to a Boolean value.

Let’s scale up the example. Here is how we create a list of all Drivers in TaxiRides that

are still under way:

 user OccupiedDrivers = UnfinishedRides >> Driver

We have re-used our Calculated Role and created a new Calculated Role with it. The >>

operator separates steps of the path we want to travel. Its name is compose; you might

want to pronounce the entire Expression as: take UnfinishedRides and then the Drivers of

those rides.

Actually, this Expression is not valid. As explained above, UnfinishedRides is a Context

Role. Each of its instances have bound a TaxiRide instance – or actually, the External Role

of a TaxiRide instance. So we have omitted a number of steps. This is the accurate path:

 user OccupiedDrivers = UnfinishedRides >> binding >> context >> Driver

Explanation:

1. the CalculatedRole starts at the TaxiCompany instance.

2. With UnfinishedRides we select some instances of the Rides Role;

3. and then, with binding we move to the External Role instances that they bind;

Copyright 2019-2021 Joop Ringelberg and Cor Baars
10

4. and then, with context we move from those External Roles to the TaxiRide

instances;

5. and then, with Driver we move to our destination, the instances of Driver in all

those TaxiRide instances.

binding and context are operators that move from a role to a role and from a role to a

context, respectively. We have more operators. See the Perspectives Language Reference

for a full list.

Calculated Properties

Just as we have Calculated Roles, we can have Calculated Properties, too. As Properties

are about simple values, we can showcase a number of other functions that we can deploy

in our Expressions.

But first we will extend TaxiRide with two Roles: Origin and Destination. Both should

have properties that somehow say something about a location. We will not go into details

about Location, but just assume it exists. But we also need some date- and time

information. For both Destination and Departure we want to keep record of the planned

moment and the actual moment. This is what we define:

case TaxiRide

 thing Origin (mandatory) filledBy Location

 property Planned (mandatory, DateTime)

 property Actual (mandatory, DateTime)

 thing Destination (mandatory) filledBy Location

 property Planned (mandatory, DateTime)

 property Actual (mandatory, DateTime)

We now are in a position to do some calculations. Let’s define PlannedDuration:

 PlannedDuration = Destination >> Planned – Origin >> Planned

What, as a matter of fact, is the type of this definition? Inspecting the Expression, we see

we subtract the values of two Properties. Hence, it must be a property definition. So what

is it a Property of? Of what Role? As it is a property of the entire TaxiRide, a natural

place would be its External Role. However, the starting point of a Property Calculation is

the role on which it is defined. We can’t move from the External role to another role of

the context in one step, so we have to change the definition slightly:

case TaxiRide

 external

 property PlannedDuration = context >> (Destination >> Planned – Origin

>> Planned)

https://joopringelberg.github.io/perspectives-documentation/perspectives%20language%20reference.html

Copyright 2019-2021 Joop Ringelberg and Cor Baars
11

The first step in the Calculation moves from the External Role to its context (TaxiRide).

Then we can retrieve the Planned property of both Destination and Origin and subtract

them from each other.

Besides subtraction, we also have addition (+), division (/) and product (*). For Boolean

values, we have ‘and’, ‘or’ and ‘not’. Strings we can concatenate with +. And DateTimes

can be added and subtracted from each other. Furthermore, we can compare values with

‘==’, ‘<=’, ‘>=’, ‘<’ and ‘>’.

Functions on sequences

Let’s return for the moment to the perspective of the Operator on Rides, both roles of

TaxiCompany. The operator might be interested in the average planned duration of all

Rides. This is how we could try to model that:

case TaxiCompany

 external

 property AverageRideDuration = context >> (Rides >> PlannedDuration /

Rides)

We mean to express that we want to sum all values for PlannedDuration and divide that

by the number of Rides. Obviously, something is lacking here! What we need is a way to

express that we want to apply a ‘sum’ function to a whole sequence of numbers, not just

to two of them. Also, we want to count the number of Rides. This is how we do it:

case TaxiCompany

 external

 property AverageRideDuration = context >> (Rides >> PlannedDuration

>>= sum / Rides >>= count)

The >>= operator applies the function on its right side to the sequence of values obtained

by the expression on its left side. The function must reduce the sequence to a single

value.

We have a number of such sequence functions: ‘sum’, ‘count’, ‘product’, ‘minimum’, and

‘maximum’. Notice how all work on numbers. However, ‘count’ will operate on any type

of value.

Perspectives in more detail

We’ve seen how Verbs can be included implicitly, by just creating a Perspective on a Role.

We’ve also seen how we can limit a Perspective by summing up the Verbs we allow. There

are a few more details we can set for Perspectives.

Copyright 2019-2021 Joop Ringelberg and Cor Baars
12

Role verbs

We’ve seen how we can exclude some role verbs. We can also exclude them all except for

a few:

 user Driver

 perspective on Passenger

 including (Fill)

Now Driver can use no role verbs, except for Fill. The entire list of role verbs is: Remove,

Delete, Create, CreateAndFill, Fill, Unbind, RemoveFiller, Move.

Property verbs

We can actually specify verbs for each property separately:

 user Driver

 perspective on Passenger

 props (FirstName) verbs (DeleteProperty, SetPropertyValue)

Driver can apply to the (comma-separated) list of properties of Passenger the verbs listed

after verbs. Alternatively, we can attach the property verbs to a view:

 user Driver

 perspective on Passenger

 view (PassengerDetails) verbs (DeleteProperty, SetPropertyValue)

Quite often a user is allowed to see a lot more than that he is allowed to change. For the

sake of demonstrating the principle, let us assume that the Driver can see, but not

change, the Planned property of the Origin Role. Furthermore assume he has to set the

value of the Actual property. This would amount to the following Perspective:

perspective on Origin

 view AllProperties (Consult)

 props (Actual) SetPropertyValue

(we assume the View AllProperties on Origin that we do not further define).

The property verbs are: RemovePropertyValue, DeleteProperty,

AddPropertyValue, SetPropertyValue, Consult.

State

Sometimes, an Verb should only be available when certain conditions have been met. For

example, the Driver can only charge the Passenger after arriving at the Destination.

Let’s take a value for the Actual property of Destination as a proxy for arriving at it.

Using that, we define a state for the external role of TaxiRide:

Copyright 2019-2021 Joop Ringelberg and Cor Baars
13

 case TaxiRide

 thing Destination (mandatory) filledBy Location

 property Planned (mandatory, DateTime)

 property Actual (mandatory, DateTime)

 property Fare (Number)

 state Arrived = exists Actual

 perspective of Driver

 props (Fare) verbs (SetPropertyValue)

We’ve given a perspective to Driver that is only valid in state Arrived. As a

consequence, only when the Actual property is set, can Driver fill in the definite Fare.

Automatic actions

A Perspectives model describes some part of the world in terms of several types, as we’ve

outlined above. A user running a model will create instances of those types, change and

delete them, thereby moving the state of the application forwards. Sometimes, such

changes must always happen in certain circumstances. Those situations can be automated:

users may delegate some of the work to the system.

It is important to realise automatic actions are always performed on behalf of a specific

user.

Building on our previous example with state Arrived, we can define an automatic action to

be performed when the Destination role gets into that state:

 case TaxiRide

 thing Destination (mandatory) filledBy Location

 property Planned (mandatory, DateTime)

 property Actual (mandatory, DateTime)

 property Delayal (mandatory, DateTime)

 state Arrived = exists Actual

 on entry

 Finished = true for extern

As soon as the taxi arrives, the system sets the Finished property of the external role of

the TaxiRide.

Notifications

As users change properties and roles and contexts, their peers can notice these changes.

But will they? A property may change that is not even on screen, for some peer. This is

where notifications come in. Notifications are assistive technology for end users: they help

to draw his attention to some changes. Above we’ve modelled the Operator of the

TaxiCompany with a perspective on Rides:

Copyright 2019-2021 Joop Ringelberg and Cor Baars
14

domain Taxi

 use per for model:PersonalDomain

 case TaxiCompany

 user Personnel filledBy per:Person

 property EmployeeNumber (mandatory, Number)

 user Operator filledBy Personnel

 perspective on Rides (ViewOnRides)

 context Rides filledBy TaxiRide

 view ViewOnRides (Finished)

Let’s extend Rides with a state that is based on the property Finished of its filler,

TaxiRide:

 context Rides filledBy TaxiRide

 state Completed = Finished

 on entry

 notify Operator “The ride starting at {binding >> context >>

Departure >> Location >> Address} has finished”

In the previous paragraph we’ve seen how the Finished property of the TaxiRide itself is

set automatically. Now we build on that, making the system notify the Operator of that

state. It does so with a message that is partly built from static text, partly from a

computation, to wit the address of the point of departure of the TaxiRide.

System

sys is the standard prefix for model:System. System models the Perspectives Distributed

Runtime itself. Each runtime has exactly one instance of the Context sys:System. In this

context instance, we find one instance of sys:System$User. This instance represents the

user of a particular runtime – ‘the’ user operating the computer running it. All user Roles

are ultimately filled by instances of sys:System$User3.

Assignment

An assignment is a statement to the extent that something changes. We have assignment

statements for properties and assignment statements for roles. Automatic actions are

expressed as assignments.

Properties

Let’s begin with assignments for properties. They have the form:

 PropertyType <operator> <expression> [for <roleExpression>]

3 But notice that, in our example, the Driver and the Passenger roles will be filled by different
users – on different computers.

Copyright 2019-2021 Joop Ringelberg and Cor Baars
15

or:

 delete property PropertyType

We have three operators: one to add a value to an existing set, one to take away a value

and one to replace all values with a new set. For example:

 MyProperty =+ 10

will add the value 10 to the existing values of MyProperty (if any). By now you may

wonder: of what role do we change property values? By default, this is the role that is

specified as the Object of the Action. However, in an assignment statement one can

change that by supplying the optional for <roleExpression> part.

Create a Role

It is straightforward to create a new instance of a Role in an assignment statement:

 createRole Rides

will create a new instance of Rides in TaxiCompany (the role name is plural, because it

represents a collection of instances. A newly created instance is just a single Role that is

added to the existing collection). The createRole Rides syntax actually is an assignment

statement.

Create a Context

With createContext, we create a context of the given type and bind it to a new instance

of the given Enumerated Role type in the current context:

 createContext ContextType bound to RoleType

In order to bind it in another context, we add a clause:

 createContext ContextType bound to RoleType in <contextExpression>

It goes without saying that actually the external role of the fresh context is bound to the

new role instance.

bind

The bind function is an assignment operator. Its general form of use is:

 bind <expression> to EnumeratedRoleType [in <contextExpression>]

It takes the value of its Expression argument and makes it the filler of a new instance of

its EnumeratedRole type argument (in other words: it binds the expression value in a new

role instance).

In our example, as the value of createRole TaxiRide is an External Role, we need to

name a Context Role in order to legally bind it. Rides is such a Role.

Copyright 2019-2021 Joop Ringelberg and Cor Baars
16

bind_

Sometimes, we already have an instance of a Role that we want to bind a value to. In such

cases, we use the bind_ assignment operator:

 bind_ <bindingExpression> in <binderExpression>

Here, the first expression must select a single binding while the second expression is used

to fetch an unbound Role instance (the binder).

unbind

We have two ways to break the binding between a Role and its filler. The simple way is to

select an instance:

unbind <expression>

Obviously, <expression> must have a role instance as value. We can select all instances

by just supplying the Role name, or we can filter the instances of that Role however we

like it. We consider these instances to be bindings and unbinding means removing them

from all binders that bind them.

Usually, that is rather strong and we want to be more picky about what we want to unbind

from. So we add the type of binder that we want to unbind from:

unbind <expression> from RoleType

As with bind, there is a variant unbind_ that allows us to select both a single binding and a

single binder and break them apart.

Delete

Sometimes we just want to remove all instances of a role. Then we use delete:

 delete <roleExpression>

Select the instances to be removed. To select from another context, just extend the

query.

Aspects

We have seen how we can define Context and Role types. We construct a Context by

constructing Roles inside it, for example. The language as we have exposed it so far

enables us to create arbitrary complex models. However, there is yet another facet of the

Perspectives Language that enhances our powers of abstraction and re-use, and that are

Aspects.

Any Context or Role type can be thought of as an Aspect. We can add a Context type to

another Context type as an Aspect. By doing so, we add the roles of the aspect to the

Copyright 2019-2021 Joop Ringelberg and Cor Baars
17

context type. So Aspects can be thought of as components that we can build more

complex types from. This is how we add an Aspect to a Context

case Car

 aspect Vehicle

(let’s assume that Vehicle contributes roles like Driver and Passenger).

The same holds for Roles. By adding a Role as an Aspect to another Role, we add the

properties of the Aspect Role to the role type. Here is how to add an Aspect to a Role:

thing Home

 aspect Location

Here we assume that Location contributes properties like X and Y coordinates, for

example.

Aspect is different from binding

We might be tempted to define Home like this:

thing Home filledBy Location

On the type level, we make Location’s properties available to Views on Home, too, just

like with Aspect. But on the instance level it is completely different. There we have to

provide an instance of Location to bind it to an instance of Home. With the Aspect-

modelling, we have to provide values for Location’s properties to the instance of Home.

There are no instances of Aspects!

Aspect exclusively is a type-level concept.

Appendices

I. Syntax of the Perspectives Language

II. Semantics of the Perspectives Language

	Introduction
	A domain with some roles
	Role: user and thing
	Property
	Attributes of properties; range
	Attributes of roles
	Perspective
	View
	Roles can be filled
	Don’t confuse View with Perspective!
	Qualified names
	Verbs

	Context
	Properties of a context
	To prevent misunderstanding…
	Properties of a context, revisited

	Let’s calculate some things!
	Calculated Roles
	Calculated Properties
	Functions on sequences

	Perspectives in more detail
	Role verbs
	Property verbs

	State
	Automatic actions
	Notifications
	System
	Assignment
	Properties
	Create a Role
	Create a Context
	bind
	bind_
	unbind
	Delete

	Aspects
	Aspect is different from binding

	Appendices

