
Indexed Names
Joop Ringelberg 06-04-20 Version: 1

Introduction

Indexing is about instances. With an indexed role, we provide a universal name for an

instance. However, that name resolves to a different instance for each user. Indexing is a

mechanism restricted to functional roles (which of the instances of a non-functional role

would the indexed name resolve to?

How do we procure an indexed role? The answer is that we create it in a CRL file that

belongs to the model. In other words: an indexed role must be a model-instance.

We have two use cases for Indexed Names:

• modellers may use them in queries (e.g. to retrieve a subset of one's hobbies)

• end users may use them to navigate.

In both cases, we want the Indexed Name to be effectively replaced by a unique name, so

the unique (indexed) resource can be retrieved. We will focus on the use in queries. We

can extract three requirements:

1. We have to be able to recognize a name as ‘indexed’ on parsing a query;

2. We have to be able to look up the type of the resource identified by the indexed

name, because, on compiling a query, we make a description of the composition of

a series of functions;

3. We have to actually produce a function as the compilation result of the querystep,

that, indeed, looks up the indexed name and comes up with the name of a unique

resource.

Uniqueness

An indexed name is qualified with a model name. Within a model, the local part of such a

name must be unique. Model names must be unique, too1, so indexed names are unique.

Private-ness

An indexed context or role is not a private context or role, where we mean with ‘private’

that only one user has a perspective on it2. Actually, we have to be careful when speaking

1 In order to ensure this uniqueness, we will have to replace model names by GUIDs in the future. A
model name is like an indexed name: a particular user will attribute a single value to a readable
model name. Notice, however, that he may encounter another model with the same name. This is a
problem to be solved.
2 Note that perspectives are on roles, rather than contexts. Here we use the term loosely, actually
meaning a perspective on the external role of the context.

2

about perspectives in relation to instances. Imagine a context type with a single,

functional user role. We give that role a perspective on the context. Now, any instance of

this context type will be private – at least if we do not give a perspective on it to user

roles in other contexts. It is private, precisely because the user role having the

perspective is functional. Were it not, there could be two (or more) users in the same

context and it would no longer be private. So we reframe our definition of ‘private’ to:

only one functional user role has a perspective on it.

As a matter of fact, an indexed role or context should be indexed in the first place

precisely because it is not private. Were it private, we could use a universal name for the

instance. Each user would have his own instance, never sharing it with anyone else – but

all instances would have the same name.

So here are the design rules:

• If we like to use a universal name for a role instance, as a query step, that should

resolve to a different instance for each user, make the role type indexed;

• If the role is private (just a single, functional user role has a perspective on it) it

need not be indexed.

In both cases, construct the instance in design time, with the model.

Modelling indexed names

To begin with, we extend the language with another keyword: indexed. We use it in the

definition of Contexts and Roles:

 case: PerspectivesSystem

 indexed: sys:MySystem

 ...

 user: User (mandatory, functional)

 indexed: sys:Me

The keyword is followed by the name we intend to be indexed. This name must be

qualified with the namespace of the model that is being defined. So here we would have

sys:Me, or, expanded, model:System$Me.

Representation

We extend the data type Context that we represent types of contexts with, with another

member: indexedContext. It’s type will be Maybe ContextInstance. Here we store the

indexed name itself, e.g. ContextInstance model:System$MySystem. Context types that

are not indexed will have Nothing as value for this new member.

Similarly, we extend the data type EnumeratedRoleType with a member indexedRole.

Note that Calculated Roles cannot be indexed.

3

Two useful functions

We construct (in module Perspectives.Instances.Indexed) two functions that will extract

all indexed contexts and roles from a model file:

 indexedContexts :: DomeinFile -> Object Context

 indexedRoles :: DomeinFile -> Object EnumeratedRoleType

We use these functions on compiling models and queries. Implementation is

straightforward: e.g. run through all EnumeratedRoleType definitions and discard the ones

that have Nothing for their indexedRole member.

Notice how we provide two bits of information in these function results:

• The keys are the indexed names themselves, as they are stored in the members

indexedContext and indexedRole;

• The values are the types of the indexed resources.

Usage in queries

An indexed name, let’s say sys:Me, may occur in a query. It can function as a complete

query in itself. When used, it should be properly qualified, so either with a valid prefix

defined in the model for the right namespace, or as an expanded name. Semantically, it

should be thought of as a query producing a singleton result.

Because an indexed name in a query is always qualified, from the text we know exactly in

which model it is defined.

Compiling a query with an indexed name

As we encounter qualified names in queries, we have to establish whether they represent

a type, or an indexed individual. We cannot say from the name only. So we find the model

the name is qualified with, apply the functions indexedContexts and indexedRoles

defined above, and look the qualified name up in the tables produced by both (function

compileSimpleStep, case ArcIdentifier, of

Perspectives.Query.DescriptionCompiler).

If the name is, indeed, indexed, we produce a query step that describes a function that

will, in runtime, look up the indexed name. Note we cannot do that in compile time!

There must be, by definition, a different result for each user.

However, the description of this step must contain the type of its result. So we must know

what type of role or context this indexed name represents. This is exactly what is returned

by the two functions above.

4

Starting to use a model

When a user first starts with a model, its indexed contexts and roles must be created. Like

all other context- and role instances that come with a model, they are defined in a CRL

file. However, in their definitions, indexed names are used. So before we parse the CRL

file and create instances, we have to replace the indexed names by unique names. This we

do by

1. Applying the functions indexedContexts and indexedRoles, to retrieve all

indexed names;

2. Creating a GUID for each of them, building a translation table;

3. Replacing each indexed name in the CRL text with stringbased search and replace.

Notice that we have to replace all indexed names in the model. The CRL file may refer to

indexed names declared outside the model and we should replace them. We introduce a

convention: only indexed names written with a prefix (that should be declared in the CRL

file) will be replaced. Fully qualified names will not be replaced3.

Looking up indexed names in runtime

As stated at the start of the text, we have two use cases for Indexed Names:

• modellers may use them in queries (e.g. to retrieve a subset of one's hobbies)

• end users may use them to navigate.

Let’s again focus on the first use case. When the PDR starts, it must build a translation

table. This table is used by the functions that our querysteps are compiled into. So how do

we build that table?

Notice that there is nothing special about the representation of an Indexed context or

Indexed role. They are not even singletons, even though there is just one instance for

each user. For example, sys:Me represents an instance of sys:PerspectivesModel$User,

but we have many of them in a PDR installation; one for each peer and the indexed one.

But which is which?

We solve that problem by requiring the modeller to list the indexed resources in the model

description. We enable him to do so by introducing two roles in sys:Model:

 context: IndexedContext filledBy: sys:NamedContext

 thing: IndexedRole

Notice how we have put no restriction on the binding of IndexedRole. Similarly,

sys:NamedContext is a very lightweight context type, merely requiring a name.

3 Rationale: it is pretty hard to detect fully qualified indexed names in a text string. We would have
to recognize qualified names, to start with; then to retrieve their model part; then to retrieve all
indexed names in those models and then check each qualified name. So as an optimization we
require indexed names to be prefixed in the CRL file.

5

On starting the PDR, we run two queries on Couchdb that produce all instances of these

two roles. This gives us all the information needed for our translation table:

• the actual resource identifier is the unique value for this user;

• from the resource we retrieve its type and from the type we retrieve the indexed

name itself.

From this we build a table with indexed names as keys and unique identifiers as values.

How to write the right instances

The success of this system depends critically on writing the right instances in the CRL file

that accompanies the model file.

We require two things:

1. For each context type that is declared indexed, we require a binding for the role

sys:Model$IndexedContext in the model instance in the CRL file.

2. For each role type that is declared indexed, we require a binding for the role

sys:Model$IndexedRole in the model instance in the CRL file.

Notice that the type of the model instance in the CRL file is a unique specialisation

(through the use of aspect model:System$Model) for each model.

IndexedContext

We furthermore require the following for the binding of IndexedContext:

1. The name of the context instance we bind to, must be the indexed name! So, for

example, in model:System we would have the name of this context instance to be

sys:MySystem; for model:SimpleChat it would be chat:MyChats (the prefixed

name is allowed).

2. The role must have a value for the property IndexedContext$Name. That name

must be, again, the indexed name – however, without the model: part. So we

would have SimpleChat$MyChats and System$MySystem respectively4.

IndexedRole

The same requirements hold for IndexedRole:

1. The name of the role instance we bind to, must be the indexed name! So, for

example, in model:System we would have the name of this role instance to be

sys:Me.

4 The reason for this is rather arcane: we do textual search and replace on the string value of the
crl file, replacing all occurrences of the indexed names. However, here we need a hook back from
the indexed name to its replacement. By omitting the “model:” part, we prevent replacement of
the property value.

6

2. The role must have a value for the property IndexedRole$Name. That name must

be, again, the indexed name – however, without the model: part. So we would

have System$Merespectively.

Example

The relevant fragment of the CRL file for model:SimpleChat is this.

chat:Model usr:SimpleChatModel

 …

 sys:Model$IndexedContext =>

 chat:ChatApp chat:MyChats

 …

 sys:Model$IndexedContext$Name = "SimpleChat$MyChats"

Notice

• The specialised type chat:Model;

• The indexed context name chat:MyChats;

• The value of the property IndexedContext$Name: it is the (expanded) indexed

name without the “model:” part: SimpleChat$MyChats.

	Introduction
	Uniqueness
	Private-ness

	Modelling indexed names
	Representation
	Two useful functions
	Usage in queries

	Compiling a query with an indexed name
	Starting to use a model
	Looking up indexed names in runtime
	How to write the right instances
	IndexedContext
	IndexedRole
	Example

