
In response to “Quick Security
Evaluation Perspectives”
Joop Ringelberg 19-10-22 Version: 1

Introduction

Radically Open Security has performed a basic quick security evaluation of the Alpha

InPlace program produced by the Perspectives project. Their report, dated September

30th 2022, contains a number of recommendations. In this text I discuss them and outline

the course of action I intend to take.

Devise a Formalized Threat Model

The author notes Perspectives lacks a formalized Threat Model. We take it that the

current report, together with the text A Security Perspective on the Distributed Runtime

(v4), forms the basis of an effort to compose that Threat Model.

Ensure Uniqueness of the GUID Identifying the User

When someone starts using InPlace, she should bring her own public-private key pair and

make sure it is registered at some key server. Currently we intend to rely on PGP (Pretty

Good Privacy) and PGP key servers.

If a message encrypted by a public key can only be decrypted with the corresponding

private key, then a unique user identification may be obtained by encrypting a standard

phrase (e.g. "user") with the public key the user brings to his InPlace installation.

Password Protect the user Account

Authenticating to InPlace is a purely local process (there is no server to authenticate to).

It is similar to authenticating to one's laptop.

It should be noted that password protection is actually in place in situations where the

users' data is stored in a Couchdb instance, mainly to cater for the case that this instance

is on a remote server.

Only when the browsers' IndexedDB is used, is no password required. This is on the

assumption that it is only the end user who has access to his machine and that this access

is (password-)protected. Note that the user name involved is purely local; it will never

leave the machine and neither does the password.

2

The remaining threat, then, is that a malicious agent acquires access to one's machine

(either remotely or physically). Currently, we choose to communicate this risk with

aspiring end users and not introduce passwords for IndexedDB data.

Securely Store Users' Passwords

This is a genuine concern and we will follow the recommendations.

Signing Keys Management

As the Perspectives system is distributed, nodes are equal and fulfil both client and server

roles, if you wish to think in those terms. A transaction is signed on A (let's call that in a

client role capacity) and verified on B (and that will then be in a server role capacity).

Consequently, every node needs a way to look up the public key of any other node's user.

We plan to outsource this administration of user id - public key association to existing key

servers (though nodes may want to cache such associations). This opens up the issue of

man-in-the-middle-attacks and we plan to address them as follows.

There are but two ways that Alice can become connected to Celia:

1. by sending her an Invitation file through a secure channel;

2. by being introduced to her, say through Bob.

Ad 1. After receiving an invitation, Celia should approach Alice (in person, or through a

secure channel) and ask for her public key fingerprint. Celia can then verify that the

public key she looks up on the key server is indeed owned by Alice. As Celia can now send

encrypted messages to Alice, she can send her own fingerprint to Alice (and obviously

Celia signs her Transactions, too). Alice can now verify the public key she looked up for

Celia.

Ad 2. When Bob introduces Alice to Celia (and vice versa), he sends their fingerprints to

either of them, both encrypted and signed. This is actually a built-in method for building a

network of trust.

Encrypt Delta Messages

As public-private key pairs are used to sign Transactions, it would seem that these same

keys can be used to encrypt transaction content (Delta). Assume Alice sends a transaction

to Bob:

• Alice looks up Bob's public key on a third party key server;

• Alice encrypts the content of the transaction using Bob's public key;

• Alice signs the transaction with her private key;

• Bob looks up Alice's public key on a third party key server;

• Bob uses it to verify that the transaction did, indeed, come from Alice;

3

• Bob decrypts the contents of the transaction using his private key.

We will implement the above process.

Manage Third Party Dependencies (Supply Chain)

We have actually started using Dependabot, as recommended by ROS.

Window.postMessage considerations

We will implement the recommendations.

	Introduction
	Devise a Formalized Threat Model
	Ensure Uniqueness of the GUID Identifying the User
	Password Protect the user Account
	Securely Store Users' Passwords
	Signing Keys Management
	Encrypt Delta Messages
	Manage Third Party Dependencies (Supply Chain)
	Window.postMessage considerations

