
External Function Interface
Joop Ringelberg 09-01-20 Version: 2

Introduction

A Perspective model consists in part of calculated roles and properties. It can also include

rules for bots: the combination of a condition and a series of statements that have a side

effect. All these calculations consist of compositions of built-in functions such as binding

or context.

In this text we describe a mechanism to make use of functions that are not built-in but

added through modules. A built-in function keyword is recognised by the parser. In

contrast, the name of an external function is not recognised. We need to use an explicit

calling mechanism to signal the system it is a function.

Furthermore, the types of the arguments of a built-in function are compared to the

requirements of its parameters. This is not true for functions that come from modules.

The only check the parser/compiler system performs is on the number of arguments.

We will call these non-built-in functions external.

Outline of the design

Core and foreign modules

External functions can belong to the core, meaning they are compiled with the source

code into the core program. These function are written in Purescript and thus are type

checked by the Purescript compiler. It may seem confusing to call a function that belongs

to the core program ‘external’. It may help to remember that such functions do not

belong to the Perspectives Design Language; they are external in that sense.

An external function can also be foreign. A foreign function is not distributed with the

core program but comes in a separate Javascript module. Such modules can be added to a

particular PDR installation by the end user (through appropriate mechanisms).

A foreign module introduces a safety risk, as its code is executed in the same interpreting

environment as the core code itself. Someone with enough determination and skills will be

able to write code that can access all secrets and affect the working of the PDR. This

means that we will have to provide a mechanism of trust to enable end users to take an

informed decision with regard to such a module. However, that topic is not the subject of

this text.

Needless to say that core modules do not introduce such a risk: the end user can put the

same trust in them as in the PDR itself.

2

Functions that yield a result

A Computed Role depends on an external function, by definition. Actually, a Computed

Role is just the call of such an external function. To underline that fact, the syntax for

constructing a Computed Role uses the keyword callExternal:

 context: Modellen = callExternal cdb:Models() returns: Model$External

Here, cdb:Models is an ordinary prefixed Perspectives identifier that expands to

model:Couchdb$Models.

The returns keyword is followed by a Perspectives Identifier that identifies the type of

the return value of the external function. Obviously, the function must return role

identifiers1 (in the case of a Computed Role).

Similarly, a Computed Property is an external function that yields a sequence of Values.

Once defined, a Computed Role or Property can be used in other calculations, just like any

other Role or Property.

db:Models is a good example of an external function. It fetches the list of documents

stored in the Models database of the Couchdb installation of the PDR.

It is also an example of a parameterless function. Functions with parameters need their

arguments between parentheses. For a Computed Role, the argument expressions are

interpreted relative to the context instance; for a Computed Property, the argument

expressions are interpreted relative to the role instance.

External functions may be part of a composition. They may occur in exactly the same

syntactical places as built-in functions.

Code that exerts an effect

In contrast to Computed Roles and Computed Properties, an Effectful Statement is the

name we give to code that is executed purely for its side effect. The functional result of

such code (if any) is ignored by Perspectives. Effectful statements can only be part of a

model as the right hand side of bot rules.

A core Effectful statement can change the state of Perspectives: it may add or delete

roles, contexts, properties, etc. A foreign Effectful statement cannot do so. It is executed

outside the Perspectives engine2. An example of a foreign Effectful statement might be

code that sends an email. For example:

 callEffect mail:Send(Receiver >> EmailAddress, Message >> Text)

1 Please do not be confused by the $External part of the result type given here; it has nothing to

do with the fact that Models is an external function.

2 ‘Cannot’ is strictly not true. Such code is executed in the same javascript environment as the core
code itself, as we’ve seen. But foreign Effectful statements are not meant to change Perspectives
state.

3

This (hypothetical) statement reads the property EmailAddress of the role Receiver, and

the property Text of a role Message and actually sends that text to the receiver. In

general, an Effectful statement is called with any number of argument values between

parentheses, separated by commas. Arguments are ordinary Perspectives query

expressions. Like all other expressions in a rule3, they are interpreted relative to the

current context (the context of the bot).

Technical details

Core modules with external functions

We have several modules that are part of the PDR, that expose external functions to the

modeller (core external functions). These modules have namespaces that are recognised

by default. One of them is model:Couchdb, with the prefix cdb. It contains functions to

access various aspects of storage of types and instances in Couchdb.

A qualified Perspective identifier does not comply with lexical rules for Purescript

identifiers. For that reason we map the Perspective identifier we use in the model text for

an external core function, to a function name as used in the core external modules. For

example, model:Couchdb$Models is mapped to couchdb_Models. The mapping must be

provided in the module that defines the external functions.

The QueryCompiler builds a function from a QueryFunctionDescription. This includes

descriptions of external functions. So how does the QueryCompiler actually access the

core modules that hold the functions themselves?

Even though these external functions are defined in Purescript modules that are compiled

with the core, we need to retrieve them from a store and apply them to arguments in the

QueryCompiler. Because of their variable number of parameters, we store them as

HiddenFunctions in a specific store for ExternalCoreFunctions (defined in the module

Perspectives.External.CoreFunctionsCache).

The compiler must generate a function call with a fixed number of arguments. Hence we

record the number of arguments for external functions. Because we check the number of

arguments in the DescriptionCompiler, the QueryCompiler can use an unsafe function to

retrieve arguments by index from an array of computed values.

Foreign modules with external functions

If the QueryFunctionDescriptionCompiler encounters an expression with callExternal4

followed by a function name scoped to a foreign module, it constructs a description that is

3 Apart from Property Assignment expressions: these are interpreted relative to the current object
set.
4 And the same holds for statements with callEffect.

4

different from that constructed in case of a core module. The QueryCompiler uses that

description as follows:

1. It separates the module name from the function name

2. It then calls a function callForeignModuleFunction in Aff, that has three

parameters:

a. The first is bound to the module name

b. The second is bound to the function name

c. The third is bound to an array holding all arguments. Each argument is itself

an Array of Strings.

The result of that function is ignored.

callForeignModuleFunction is a foreign import (a function imported by Purescript). It’s

implementation is in Javascript. It essentially requires5 a module by the given name,

obtains a function from it and applies it to the argument list.

It also throws an error in each of these situations:

1. The module is not found;

2. The function is not found;

3. The integer value of property nArgs of the function object is not equal to the

length of the argument list.

4. An error is raised during execution of the function.

Retrieving a foreign module

We use exactly the same mechanism for foreign external modules as for the modules that

hold screen definitions for models. Consequently, a foreign module is stored as an

attachment to a model file (DomeinFile). These files are stored in Couchdb and are

retrieved from Couchdb just like screen modules.

5 ‘require’ is Javascript lingo for loading a module.

	Introduction
	Outline of the design
	Core and foreign modules
	Functions that yield a result
	Code that exerts an effect

	Technical details
	Core modules with external functions
	Foreign modules with external functions
	Retrieving a foreign module

