
Contextualizing
Joop Ringelberg 14-05-20 Version: 1

Introduction

Perspectives relies on a powerful abstraction mechanism called aspects. An aspect is a

Context1 that may be added to another Context, which we call a specialiser of the aspect.

It thereby brings its roles into that specialiser. Furthermore, a role in the specialiser may

be augmented by a role of the aspect. The role thus becomes a specialiser, too. The

effect of Role specialisation is that

1. The aspect Role properties are added to the specialiser’s role;

2. The binding of the specialiser must be equal to or more specific than that of the

aspect role;

3. If the aspect Role is a User role, its perspective (a collection of Actions) is added to

that of the specialiser role.

Example

model:SimpleChat contains the definition of Chat, whose definition follows (partly)

below:

 case: Chat

 aspect: sys:Invitation

 user: Partner (not mandatory, functional) filledBy:

sys:PerspectivesSystem$User

 aspect: sys:Invitation$Invitee

Chat has aspect sys:Invitation:

 case: Invitation

 user: Invitee (mandatory, functional) filledBy: Guest

 bot: for Invitee

 perspective on: Invitee

 if exists Invitee then

 bind object to ConnectedPartner in PrivateChannel >> binding >>

context

The role Partner in Chat is a specialisation of the role Invitee of Invitation. Notice

that Invitee has a bot and its condition is that an Invitee must exist.

1 We talk types unless specified otherwise.

2

Problem statement

When we add an instance of Partner to an instance of Chat2, we expect the bot to do its

thing. After all, Partner is just an Invitee in disguise. But in Perspectives v0.4.0 that will

not happen. The rule condition, being the query exists Invitee, applies the step

Invitee to the instance of Chat, looking for a literal occurrence of “Invitee”3. And it will

not find it: it has an instance of Partner instead. As a consequence, the rule will not fire.

We could, of course, rewrite the rule:

if exists Partner then

 bind object to ConnectedPartner in PrivateChannel >> binding >> context

This would work4. We would have contextualised the rule in the type Chat. Obviously, we

would have to add the rule (and thus the bot) to Chat (the model checker would refuse it

as part of Invitation, because Partner is not defined in model:System). So in effect we

would have to overwrite this rule in the specialising context.

That is not what we want. We want a mechanism that contextualises automatically.

Solution

There are several ways to solve this problem. In principle, we would like to solve it

entirely in compile time (let the modeller wait so the end user has better performance).

This would involve automatically rewriting queries from aspects to fit their specialisers. It

would also entail inverting those specialised queries. And these inverted specialised

queries would, by definition, cross more model boundaries than the originals. It is not

impossible, but cumbersome.

Instead, we have chosen to do a little more work in runtime. The key observation is that

we need aliases when looking up roles. When looking up Invitee, we should know that

Partner is an alias – and lookup with that key, too.

We can find aliases by reflecting on the model. After all, the definition of Partner

references Invitee. How and when do we use this information?

Double indexes in context instances

In v0.4.0, a PerspectContext instance contains an Object (Array RoleInstance)

where the keys are the (string values) of Role(types). Retrieving the instances of a Role

requires just one lookup.

2 In the rest of the text we will write ‘when we add a Partner to a Chat’, leaving out all references
to instances, meaning the same thing.
3 Property qualified, so really: “model:System$Invitation$Invitee”.
4 One might wonder: will the effect not fail on the step PrivateChannel? After all, that is a Role

of Invitation, too, just like Invitee. But we need not change it, because there is no

specialization of PrivateChannel in Chat. It is added as is.

3

We will change that by

• Adding a new member to PerspectContext (the representation of context

instances): aliases. This will be an Object String. The keys are, as before,

Role(types); the values are indices in an array roleInstances. The type of

roleInstances is Array (Array RoleInstance).

• Looking up a particular Role in two steps: first we find, in aliases, an index that

we then use to look up the actual instances in roleInstances.

We build this structure gradually per PerspectContext instance, when we add a Role

instance:

• If there is not yet an entry for the type of the instance to add, we reflect on the

model by looking up the type. We then add an entry to aliases for the type and

for all its aspects. We also add a new empty array to roleInstances. Obviously,

we store the index of this new array with all keys we’ve just added to aliases.

• If there is an entry, we take the index associated with it and add the role instance

in the corresponding array in roleInstances.

Performance wise, there is an small extra penalty for each role instance lookup and some

more work on changing instances, mainly when adding the first instance of a particular

type.

Reverse lookup: the binder step

There are two ways for a query to visit a role instance. The first, which we’ve discussed

above, is when we move from a context instance to a role instance. The second is when

we move from a role instance to a particular (set of) binders: roles that bind the instance

we depart from.

The binder step requires a Role(type) because any Role may be bound by many others5.

Obviously, this step is affected by contextualisation, too. As an example, consider this

small query:

 User >> binder Invitee >> context

As Invitee is bound to model:PerspectivesSystem$User, we can navigate back from an

instance of model:PerspectivesSystem to an Invitation. But now consider a Chat with

a Partner. Partner will be bound to User as well. However, in version v0.4.0, this query

will not find any instance of Chat.

Again, we have to rely on aliases to make it work. But this time, as the direction is

reversed, the alias table is structured differently.

5 Be careful to distinguish between multiple instances of the same Role type, and multiple types!
Here we mean the latter.

4

We add a new member to PerspectRol: inverseAliases. This is an Object (Array

RoleType). Its keys are the string values of Role(types). Its values are the Roles that

specialise the key, including itself6.

The representation of the inverse bindings does not change. But lookup does. In our

example, when binder first looks up Invitee in inverseAliases. It finds [Invitee,

Partner] and then looks up both in the inverse bindings, combining the results. Thus it

finds the Partner instance that binds the user instance.

Again, we build this structure gradually. If there is not yet an entry for a Role(type), we

reflect on the model, find all aspects of the type and add the type under the entry for

each aspect (adding an entry when necessary).

No consequences for serialization

The association between a Role(type) in the object aliases, and a particular index in

roleInstances, depends on the historic order in which role instances were added to that

particular context instance. These histories could be different for users sharing that

context: one may have a perspective on a Role that another has not.

This learns us that we cannot communicate these indices in Deltas. But this need not

worry us, because a Delta is like a remote procedure call rather than a data item. The

receiver of a Delta executes the call and that will lead to appropriate and possibly unique

association between role types an indices.

Similarly, a context Serialization is translated into calls to functions that reconstruct

contexts and roles.

6 Notice that for a Role that has no aspects, an entry would be made whose value would be an array
that contains just the Role type itself.

	Introduction
	Example
	Problem statement

	Solution
	Double indexes in context instances
	Reverse lookup: the binder step

	No consequences for serialization

