
Building a release
Joop Ringelberg 29-11-19 Version: 2

Introduction

Perspectives imports many packages. Some of these packages belong to the Perspectives

project. In this text we describe a workflow that can be followed to produce a new

release of Perspectives.

Two types of dependencies

Purescript projects use psc-package for their Purescript package management. For

Perspectives, we have a custom package set (kept in the project package-sets). For each

release, we must check whether any of the Purescript dependencies of perspectives-core

have been changed; if so, we must bump their version (by creating a Git tag) and add that

to package-sets. We then must make perspectives-core depend on that new package set.

Note that perspectives-core is the only project that depends on other Perspectives

Purescript packages.

However, to keep things simple, we have all Perspectives Purescript Packages use the

same package-set version.

However, the projects making up Perspectives also use npm, for node package sets. Some

dependencies of Perspectives projects are custom node packages (such as perspectives-

proxy). For such dependencies we must bump their Git tag versions, too, and update the

versions in the package.json files of projects that depend on them.

If a Purescript Perspectives package has Purescript Perspectives dependencies, it must

use the Purescript Package Set.

If a Purescript Perspectives package is a Purescript Perspectives dependency, it must be

in the Purescript Package Set.

Development between versions

In the period between two releases, imported packages will change, too. To prevent many

sub-versions and unnecessary work, we replace the subdirectory of such an imported

package in the core project by a symlink to a working directory holding a clone of the

package project. To be precise: the .psc-package directory of perspectives-core holds a

subdirectory for a particular version of the package-sets (for example: psc-12.5-

perspectives). This directory in turn holds subdirectories for packages, that in turn have

subdirectories for specific versions of those packages. Schematically:

• .psc-package

2

o psc-<version>-perspectives

▪ <some-package>

• <some-version>

We replace the <some-version> subdirectory with a symlink to the project root for <some-

package>.

Each time we run psc-package:

$psc-package install

or:

$ psc-package build

these symlinks must be restored, at least for each package that has been changed since

the previous release. We have a script for that: createPerspectivesLinks.sh (this script

must be adapted to the new tag of package-sets for each release).

The above holds for Purescript projects. Similar reasoning applies to Node projects.

Releasing a version

Order the packages according to dependencies, such that if B depends on A, the order is A

– B1. Then create new git tags in that order, because the new versions of a project’s

dependencies have to be recorded in its package.json before its final commit can be

created to which the new tag is attached.

For Purescript projects, the new version of the Perspectives project package-set has to be

set in the field “set” in their psc-package.json file, too.

1. Create a tag name for the new release of package-set before actually creating that

tag (this is assuming that at least one of the Purescript packages has changed!).

The tag name has the form pv<version>.

For each project (for which the dependencies have been updated and tagged!):

2. Check in all changes to Git.

3. Update the dependencies on Node Perspectives packages in package.json

4. If a Purescript project: update the field “set” in psc-package.json.

5. [if a Purescript project with Perspectives dependencies] Adapt

createPerspectivesLinks.sh:

a. Use the new tag of package-sets to descend into the right subdirectory of

.psc-package

b. Use the new tags of the updated packages to replace the right

subdirectories.

6. Commit changes.

1 An excel file with that ordered list can be found in perspectives-
documentation/releaseNotes/package-versions.xlsx.

3

7. Check if a new release is in order. See Check if a package has been updated after

the previous release on how to proceed.

NOTE: InPlace must be released to a new version each time, since at least one of

the dependencies will have changed (e.g. the core).

8. If so, and if the project has a package.json file:

a. set a new version number in the field “version”. Use semantic versioning:

1.1.1.

b. Commit the new version number to Git. Push to Github.

9. If so, apply the commands in Create a tag. Prefix the semantic version number

with “v”.

10. Push to the origin!

11. If so, and if the project is a Purescript project and a dependency for another

Purescript project, update its version in the project package-set in the file

packages.json.

After all packages have been released:

12. Check if all Purescript projects with a new tag have that new tag in the project

package-set in the file packages.json.

13. Commit package-sets and create a new tagged version, using the tag of step 1.

14. Update the release notes in the documentation project, use the new tag of the

core.

15. In the documentation project, save all Word files with a date later than the

previous release to PDF to the docs directory.

16. In the documentation project, save all .md files to .html in the docs directory.

17. Commit the documentation project and give it the same version tag as the core.

Check if a package has been updated after the previous release

How can we see whether a package (whether a Purescript or Node package) has been

updated, since a previous release? By checking commits to that project and comparing

them with the commit hash of the previous release.

 git log --oneline --decorate --tags --no-walk

This command lists all tags for a project, showing the (short) commit hash. The most

recent tag is that of the last release.

 git log -5 --pretty=format:"%h - %cr, %s"

This command lists the last five commits in a project. If the commit hash of the last

release is not the same as the hash on the top of the list of commits, a new tag is in order.

Create a tag

Create a tag for a Git project with the following two commands:

4

 git tag -a v2.5.6 -m "some description"

 git push origin v2.5.6

Delete a tag

Local:

 git tag -d tagName

Remote:

 git push --delete origin tagName

Move a tag

Created and pushed a tagged version and then discovered some uncommitted changes?

Here is how to remedy that:

• Delete the tag on any remote before you push

 git push origin :refs/tags/<tagname>

• Commit your stuff.

• Push it to the server

• Replace the tag to reference the most recent commit

 git tag -fa <tagname> -m “Your message”

• Push the tag to the remote origin

 git push -f origin <tagname>

Building a distribution

We currently have a way to create installers for MacOSx and for Linux.

MacOSx

An installers is created by electron-builder. To prepare for a new version of the installer,

create a draft on Github. Open the project perspectives-react-integrated-client

and click Create a new Release on the right.

• Choose a package.json version and precede it with v. E.g. for version 0.7.0, enter

v0.7.0. So choose an existing tag!

• Check “This is a pre-release”.

• Save the draft.

Build

First, make sure the project builds correctly:

5

 npm run build

Then either test or release.

Test

To create a directory of unpacked files (for testing purposes), run

 npm run pack

To testrun the packed application, open dist/mac/InPlace.

Release

In the project perspectives-react-integrated-client, run the command:

 npm run release

to create a new default distribution for Mac and push it to Github.

Linux

Careful: do not run ./createPerspectivesLinks.sh, as the dependent projects are not

cloned to this Ubuntu disk! If dependencies in packages.json have been changed, just

update npm.

• Start VirtualBox, the Ubuntu machine. The password for user ‘Joop Ringelberg’ is

‘geheim’.

• Open a terminal and move into the project directory.

cd /home/joop/code/perspectives-react-integrated-client

• Pull all changes from Github:

git pull

• If dependencies in packages.json have been change:

npm update

• Build:

npm run build

Now test the application using npm run electron&. When all is fine, run the command:

 npm run release

to create a new default distribution for Mac and push it to Github.

Finally, publish the release on Github.

A note on Github credentials. The file release.sh contains a Github credential. We need

that to be able to push to Github. This file may never be published to Github!

6

	Introduction
	Two types of dependencies
	Development between versions
	Releasing a version
	Check if a package has been updated after the previous release
	Create a tag
	Delete a tag
	Move a tag

	Building a distribution
	MacOSx
	Build
	Test
	Release

	Linux

