
Booting a domain
Joop Ringelberg 28-07-20 Version: 1

Introduction

When a user adds a Model to his PDR, he automatically adds some context- and role

instances, too. Collectively, we call them the base model instances. Each Domain contains

a context that describes the model (it is a specialisation of sys:Model). Moreover, each

Domain (may) contain a context that serves as the root of other instances (it is a

specialisation of sys:RootContext). Such a root context invariably has a user role that is

a specialisation of sys:RootContext$User.

Technically, these instances are constructed from a CRL file that is included with the

Model. As with all modifications of the data that is part of the Perspectives Universe,

these role- and context instances should contain signed deltas detailing what user, in what

capacity (role), constructed them1. However, CRL is not a format that supports such

information (and, indeed, we will see that it would not be appropriate for this file to carry

it). This text explains how these deltas come into being.

Who constructs the base model instances?

On first sight, it might appear that the author of the model must be the author of the base

model instances. This certainly holds true for some instances, such as the model

description. However, it would be inappropriate for indexed contexts (and roles). An

indexed context is one that is on the one hand unique for each user, but on the other hand

is identified by the same name by those users – sys:MySystem being the prime example.

Such contexts should be constructed by the users themselves – not by the author of the

model.

When the PDR parses the CRL file and constructs the instances it describes, it must find

the appropriate role that is authorized to construct each of them. In the general case,

that may be an undecidable problem in the sense that there may be multiple roles that

are authorized to construct a particular context – and then how should the system choose?

Instead, we arrange for things such that all these instances can be created by the User

role of the PerspectivesSystem. We do this by modelling some Aspects in the system

model and by stipulating that modellers add these Aspects to their types. This limits

modellers in the instances they can ship with their models. However, we think that will be

no problem. Moreover, there seems to be an escape for the modeller who really needs to

add instances of types that cannot use the aforementioned Aspects: he can introduce a

1 The reason being that whenever the PDR ships these instances to the PDR of another user, that
PDR will want to check that they were constructed by authorized roles.

2

Guest role and have it filled with the system User role, then give that role the necessary

perspectives.

Aspects

sys:Model

The type sys:Model should be used as an aspect of the type that describes the model.

This means that each Domain has a unique type that describes it. These types can be

empty, otherwise; we just need a unique type for other reasons.

To give an example: in model:SimpleChat we have the following type:

 case: Model

 external:

 aspect: sys:Model$External

 aspect: sys:Model

The modeller then includes the following instance:

 chat:Model usr:SimpleChatModel

 extern sys:Model$External$Name = "Simple Chat"

(only part of the type is given).

sys:RootContext

The type sys:RootContext should be used as an aspect of the type that functions as the

root context for a model. Again, in model:SimpleChat we have:

 case: ChatApp

 external:

 aspect: sys:RootContext$External

 aspect: sys:RootContext

We also have a role Chatter that has an aspect sys:RootContext$User:

 user: Chatter (mandatory, functional) filledBy:

sys:PerspectivesSystem$User

 aspect: sys:RootContext$User

 perspective on: Chats

Perspectives on Aspect roles

These aspects should be used because we have provided the

sys:PerspectivesSystem$User role with perspectives on them. This allows us to have

the User role legally construct instances of models and root contexts.

3

Instances of models

To start with instances of models:

 user: User (mandatory, functional)

 perspective on: ModelsInUse

Being a default perspective, it includes the verb CreateFiller. That allows User to

construct instances of the binding of ModelsInUse. As this latter role is restricted to

fillers of type Model, we see that User now has the authority to construct instances of all

types that are models – hence the requirement that modellers give their model description

that Aspect.

Root contexts

Next, let’s consider root contexts. These are special cases. They are contexts that are not

bound in another context, or need not be bound. Consequently, our semantics for creating

contexts fail: there is no context role that a user can have a perspective on, that allows

that user to create the context and its external role. A Database Query Role gives an

escape route, but we don’t want to tie the two together.

Hence, we just make an exception for root contexts. The sys:PerspectivesSystem$User

role is by decree authorized to create such contexts and their external role. So, for

example, the context type model:SimpleChat$ChatApp, having the aspect

sys:RootContext, can be instantiated by sys:PerspectivesSystem$User.

Users in root contexts

ChatApp has a user role Chatter. This role – filled by User – is authorized to construct

new chats. We have to make it legal for the User role to construct and fill the Chatter

role. Again, like with root contexts, we make an exception. It is legal, by decree, for the

sys:PerspectivesSystem$User role to create and fill roles that have the aspect

sys:RootContext$RootUser (and notice that, because each user is in the end a

sys:PerspectivesSystem$User, everyone can create these roles). By giving Chatter

that aspect, all is well.

Special case: the external role of Model

The representation of the external role of sys:Model is part of the model file (DomeinFile).

This is because a repository provides a list of such roles as its inventory. It also allows us

to ship the relevant role representations from the repository to the PDR of the users

consulting the repository. Thus, these external roles can be verified to be constructed by

their model authors.

	Introduction
	Who constructs the base model instances?
	Aspects
	sys:Model
	sys:RootContext
	Perspectives on Aspect roles
	Instances of models
	Root contexts
	Users in root contexts

	Special case: the external role of Model

