
Binder vs Filler terminology
Joop Ringelberg 18-01-22 Version: 1

Two sets of terms

Unfortunately, in the implementation of the PDR we use a different set of terms for

connecting roles than in the language definition.

Representation

In the implementation we have a member in the representation of a role instance that is

named binding. This points to the role that fills it.

Conversely, from roles we keep tabs on what other roles are filled by it. These are the

filledRoles.1

Functions: binding, binder <Role>

We have a function for traversing the link in both directions:

• binding traverses from filled to filler2;

• binder <filled> traverses from filler to filled3.

Language: fills, filledBy

A role type definition is given partly in terms of the keyword filledBy. This uses a

different metaphor. The converse would be fills.

Relation between the two; cardinality

The translation is simple:

Implementation Language Cardinality

Binder filled fills filled Multiple

Binding filler filledBy filler Just one

Obviously, a role can be filled by just one other role, but it can fill many. The following

figure depicts the relations.

1 Actually, the term is in Dutch: gevuldeRollen.
2 We might want to rename binding to filledBy.
3 We might want to rename binder <RoleName> to fills <RoleName>.

2

Figure 1. The two links that connect two roles.

Inverted queries

We store, with role types, inverted queries that lead back to the origin of perspectives

(i.e. from the object of the perspective to its user role). We collect the inverted queries

that start with a binder step in onRoleDelta_binder, and inverted queries that start

with a binding step in onRoleDelta_binding.

The illustration shows how, for the same link between two roles, the inverted queries that

traverse it are thus stored on opposite ends.

When we severe a connection

When the links between two roles are severed, we must trace inverted queries back to

their origins to find (contexts with) users that should be informed. Two links will disappear

(fills and filledBy), hence we must evaluate two sets of inverted queries:

• those in onRoleDelta_binder of the Filler;

• those in onRoleDelta_binding of the Filled.

Refer to Figure 1 for better understanding.

Direction: in and out of the context

A role R is attached to a context. R might fill roles in other contexts. We call a connection

whose fills link departs from R outgoing.

Conversely, R might be filled by a role from another context. Therefore we call the

connection whose fills link ends in R incoming.

3

Figure 2 A single role in two relations: both as filled role and as filler role.

But, both inverted queries in:

• onRoleDelta_binding of R and

• onRoleDelta_binder of R

constitute links that move out of its context.

And, in terms of operations on R:

• filledBy moves out of its context;

• fills moves out of its context4.

When we remove a role

When we completely remove a role, we have more work to do than when we just remove

a binding.

Removing a role gives us a direction, because it is natural to reason from the context that

the role is removed from. Again, we must trace inverted queries back to their origins to

find (contexts with) users that should be informed.

However, we should now trace all links in and out of the context through the role to be

removed. Referring to Figure 2, they are:

• those in onRoleDelta_binder of R;

• those in onRoleDelta_binding of Filled (and there may be many such roles);

• those in onRoleDelta_binding of the R;

• those in onRoleDelta_binder of Filler (just the one).

4 In both cases: unless both roles come from the same context, of course.

	Two sets of terms
	Representation
	Functions: binding, binder <Role>
	Language: fills, filledBy
	Relation between the two; cardinality
	Inverted queries
	When we severe a connection
	Direction: in and out of the context
	When we remove a role

