
Assignment
Joop Ringelberg 12-11-19, 17-01-22 Version: 3

Introduction

A user role can have a perspective on roles in- or outside his own context. This brings with

it the possibility to change those roles, i.e. to add or remove instances and to add or

remove values to or from their properties.

A user agent exclusively changes state through (graphical) user interfaces. Automatic

actions on his behalf when state transitions occur, have to be programmed however and to

do so we need a vocabulary. This text contains the design for that part of the Perspectives

language1.

Statements that change the state are called assignments. There is a small vocabulary for

assignments on roles, including a number of special operators: move, remove, delete,

bind, bind_, unbind and unbind_ and the keyword combinations create role and

create context. There is a smaller set for assignment on property values: =, =+, =-. We

also use delete on property values.

The default case is assigning to roles and properties in the context that contain where the

state transitions are modelled. We design our language to be intuitive for that default

case, extending it for the situation where state of other contexts is changed (see the

design text Perspectives across context boundaries).

Design

Current context

An automatic action can happen only in a state transition. States are defined with

conditions, which are just Boolean queries. The assignments that make up the automatic

effect are executed when the condition becomes true. Conceptually, the system observes

each context- and role instance. As soon as the state of one of these instances changes in

such a way that the condition of one of its defined states evaluates to true, the automatic

effect is carried out.

It is therefore important to realise, when reading below about the language for effects,

that the effect is computed relative to some context instance. All queries that are part of

effect statements are executed with that context instance as their starting point. Below,

we call it the current context instance. The current context can actually be used inside an

expression. Reflect on the nature of expressions: they trace a path through the network of

1 Also note that the API of the Perspectives Distributed Runtime exposes these functions.

2

contexts and roles. Using the keyword currentcontext, the modeller can re-base a

subexpression to the context instance that the rule is executed in.

At the same time, the rule is defined in a perspective. The perspective has an object: a

role in the context. When the automatic effect is defined on a role state transition, that

role is the object. When it is defined on a context state transition, all instances of the role

in that context are the object. These instances are bound to the query variable object. It

is available in the state condition and in the statements of the effect. It is useful, for

example in the situation where one wants to bind that object to a Role instance.

Assignment statements for roles

Below, we’ll find that assignment operators on roles take one or more arguments, that

specify what they operate on. For example, in the case of the remove operator its first

argument says what we want to have removed automatically. These arguments can be

arbitrary expressions – as long as they select roles of the same type as the Object of the

Perspective. The system, after all, must operate within the limits set for the user that it

works on behalf of!

Implicitly, we give the user that the system carries out an automatic effect for, the role-

and property verbs required to do so.

Remove

Let’s consider the situation where we have some instances of a role that we want to

remove from their context. We have selected them with a query, <roleExpression>:

 remove <roleExpression>

Remember, <roleExpression> is a query applied to the current context instance. For

example, this could be such an expression:

 filter SomeRoleType with Completed = true

This query will select some instances of SomeRoleType in the current context instance. If

we prepend the keyword remove to that expression, all those role instances will be

removed from the current context instance.

This works on any context, because role instances are bound to a context. We need not

say from which context we want to remove them. So in order to remove role instances

from an embedded context, we’d write for example:

 remove filter AContextRole >> binding >> context >> AnotherRole with

Completed = true

We select a context role, move to the context that is bound in it, move to one of its roles

and filter it like before. As before we end up with a number of role instances: these will

be removed from the embedded context.

3

What if we want to remove a role that has been added to a Database Query Role? In order

to enable the system to decide whether removing the (external) role instance is allowed,

it needs to know the Calculated Role type that it should be removed from. So we get:

 remove <roleExpression> from RoleType

CreateRole

Create a new role instance in this way:

 createRole RoleType

Here RoleType is not a query, but the identifier of the role we want to create. We can use

an unqualified name but it will have to resolve in the type of the current context. The

new role instance is attached automatically to that context. In that sense, createRole is

an assignment statement, too.

We can also create a role instance in another context:

 createRole RoleType in <contextExpression>

<contextExpression> selects one or more context instances. RoleType now has to

resolve in the type of those instances.

Move

Usually, when we add a role instance, we create it at the same moment. However, it is

possible to move role instances from one context instance to another. Then we use the

move operator:

 move <roleExpression>

This removes the selected instances from their origin context and adds them to the

current context2. To move to another context, we use an extra clause:

 move <roleExpression> to <contextExpression>

Again, in order to make this useful, <roleExpression> should select from another

context than that identified with <contextExpression>. Notice that

<contextExpression> can only select a single context.

Delete

Sometimes we just want to remove all instances of a role. Then we use delete:

 delete role <roleType> [from <contextExpression>]

Select the instances to be removed. Optionally, to select from another context, add the

from <contextExpression> clause. Be careful with deleting the instances of a Database

2 Note that if <roleExpression> selects instances in the current context, this statement does not
change state!

4

Query Role: all instances that are not bound to some other role will be removed from the

users Bubble!

To remove all values of a property, use a slightly different syntax:

 delete property PropertyType [from <roleExpression>]

Notice that we do not provide a query to select instances. We just want to remove all

values of the property. By default, we remove them from the current object set (see

Object of the Perspective below). To remove from another role, add a clause:

 delete property PropertyType from <roleExpression>

Obviously, PropertyType has to resolve in the type of roles selected by

<roleExpression>.

Bind

To fill a role with another role, use bind (when A fills B, we say that B is bound to A. A is

the binding; B is the binder). Bind like this:

 bind <binding> to RoleType

 createRole RoleType filledBy <binding>

Here, <binding> selects instances of a role (the bindings) whose type must be equal to, or

more specialized then, the possible bindings of RoleType. A new instance of RoleType

will be constructed automatically (the binder) and attached to the current context.

To bind in another context, add a clause:

 bind <binding> to RoleType in <contextExpression>

Again, RoleType should resolve in the type of the instances selected by

<contextExpression>.

If RoleType happens to be functional, <binding> must evaluate to a single role instance

as well. Notice that <contextExpression> may evaluate to multiple contexts; we just

bind in all those contexts.

Bind_

The variant bind_ can be used to bind an instance of a role in a previously existing

instance of RoleType:

 bind_ <binding> to <binder>

The first expression (<binding>) selects a role instance that is going to be bound to the

role instance selected by the second expression (<binder>). Notice the singular: this

operation only works on singletons3.

3 If we allowed more bindings and binders, it would be unclear what should be bound to what.

5

Obviously, the binder must be legally able to attach to the binding. That is, the possible

bindings of the binder must be equal to or more general than the type of the binding.

To bind in another context, just select binders in another context.

Unbind

The inverse of bind is unbind. Notice that unbind does not remove anything. Both the

binder and the binding remain attached to their contexts.

 unbind <roleExpression>

Here, <roleExpression> selects role instances as before. But do we consider them as

binders, or bindings? Both are possible. By convention, we choose them to be bindings

(fillers) and thus we release them from the roles that bind them (filled by them).

Notice the plural. A role can be bound many times, in many different other roles. By just

using an unqualified unbind, we break all bonds that this instance has. Usually, we want to

be more selective and this we achieve with another clause:

 unbind <binding> from RoleType

Now, we just release the instance from a particular type of binder. Still, this is across all

instances of the context with that type of binder. We can’t be more selective with

unbind, but we can with unbind_.

On removing the last binder of an external role, the context it belongs to may be

removed, too! This process can cascade recursively to nested contexts.

Unbind_

Remember that bind_ allowed us to select roles that become a binding and a binder

respectively. Similarly, with unbind_ we select a role that is a binder and a role that is a

binding and break them apart:

 unbind_ <binding> from <binder>

As with bind_, this only works with singletons.

There is another use case for unbind_. It is possible to bind a role instance to more than

one other role instance, of different types. This enables us to create role instances as

combinations of property packages, as it were: think of a role at the pharmacy that you’ll

fill both as patient and as bank account holder. Unbind_ allows us to pick those multiple

bindings apart. We can just remove, say, the bank account role from the pharmacy client

role.

As with unbind, on removing the last binder of an external role, the context it belongs to

will be removed, too! This process will cascade recursively to nested contexts.

6

‘missing’ statement types: add and set

One might expect an operator add, to add role instances to a context. However, just

where would these instances come from? We don’t need add for creating instances,

because createRole ‘adds’ the created instance to the context anyway. The only possible

source for the right kind of instances would be from another context than the current.

However, for this we have the move operator. Notice also that a role instance can only be

attached to one context instance. So to move, we have to detach and re-attach

somewhere else, preferably in a single transaction. This is precisely what move

accomplishes. By omitting the add operator, we protect the modeller from mistakes

without compromising what he can express.

A set operator would replace the current instances of a role with a new set. There are use

cases for this operator, but these can always be programmed by a combination of delete

and move or delete and createRole.

Creating contexts

One of the design goals for Perspectives is that all context- and role instances must be

reachable. This can be attained by direct indexing (e.g. a role is directly linked to its

context), by deploying an indexed name4, or by a database query that retrieves instances

of a particular type5. Such a query has to be the expression by which we define a

Calculated Role. To differentiate such database-query-based Calculated Roles from those

that are defined by a path query, we call them Database Query Roles.

The assignment statements for roles preserve this quality. In order to do the same for

freshly constructed contexts, we have to bind them directly to a context role in another

context, or we must ensure that they are available through a Calculated Role somewhere

that performs a database query.

Notice there is no operator to remove a context. Contexts are deleted if they are no

longer bound, or, in the case of a context that was never bound but added directly to

some Database Query Role, as soon as they are removed from such a role (a role based on

the same type).

Create context

With create context, we create a context of the given type and bind it to a new

instance of the given Enumerated Role type in the current context:

 create context ContextType bound to RoleType

In order to bind it in another context, we add a clause:

4 An indexed name has a different extension (reference value) for each end user, e.g. My System.
5 They must be external roles, possibly filtered. Database Query Roles must be context roles.

7

 create context ContextType bound to RoleType in <contextExpression>

It goes without saying that actually the external role of the fresh context is bound to the

new role instance.

If RoleType is a Calculated Role that qualifies as a Database Query Role, no role instance

is created to bind the new context. However, we require ContextType to be equal to or a

specialisation of the result type of the Database Query Role.

Create context_

Like with bind_, we may be in the situation that we already have a role instance that acts

as binder. For that case, create context_ creates a context instance of the given type

and binds it to the role instances selected with <roleExpression>.

 create context_ ContextType bound to <roleExpression>

Assignment statements for properties

The object of the perspective

For role assignment, we discussed the importance of the current context. For property

assignment, a similar importance is attached to the object of the perspective. Remember

that automatic actions are run for a user role having a perspective. A perspective has an

object. The object is selected as a is query applied to the current context (it follows that

there may not be an object and that there may be multiple objects).

Again, when the automatic effect is executed, there is a current object set (possibly

empty). A the assignments are executed on each element of that object set in turn,

binding an instance to the query variable object. It is available in the condition of the

role state and in the effect making up the automatic action.

When we change the values of a property, we really change a role’s properties. If not

stated otherwise, we change the properties of the current object set.

Operators

For assigning values to properties, we use a number of infix operators: =, =+, =-. We also

re-use the delete operator we’ve seen for roles, but with an extra keyword property.

However, property values are not moved or created, neither bound nor unbound.

=, =+, =-

The syntax for these three operators is the same. For example:

 PropertyType =+ 10

8

would add the value 10 to the existing set of values for PropertyType for each element in

the current object set.

In order to change the property values of another role, we provide an extra clause:

 PropertyType =+ 10 for <roleExpression>

Here, <roleExpression> is a query executed on the current context. Of course it can

select roles outside the current context, too.

An expression can be used on the right of the operator:

 PropertyType =+ SomeRole >> AnotherProperty

The meaning of this expression is: add the value(s) of AnotherProperty, for each of the

role instances of SomeRole, to those of PropertyType (of the same instance). The query

expression is evaluated relative to the current context.

Delete

This is how to delete all values for a property on the instances in the current object set:

 delete property PropertyType

And here is to delete the values on another role instance:

 delete property PropertyType from <roleExpression>

Why there is different syntax for properties and roles

Superficially, assignment does not look that different for roles and properties. So why not

adhere to the same syntax for both? There are three reasons:

1. There are assignment operations that work on roles but not on properties: bind,

bind_, unbind, unbind_ and move.

2. There are assignment operations that work on properties but not on roles: = (set)

and =+ (add).

3. The remove operator is quite different for roles than for properties.

To remove a role, we have sufficient information with:

 remove <roleExpression>

The expression identifies the role instances that we want to remove. They are represented

internally by identifiable data structures that we can find and destroy. Moreover, we can

look up any references to them, so we can clean those up, too.

In contrast, to remove a property value, we not only have to find the role instance that

bears the values to be removed, but we also need the name of that property (and, of

course, the values to be removed). So we must write down both a <roleExpression> and

the name of the property (an EnumeratedPropertyType):

9

 EnumeratedPropertyType =- <valueExpression> from <roleExpression>

(we can omit the <roleExpression> from our expression if we want to operate on the

current object set, but to effectually remove the values we do need role instances!).

These differences are great enough to justify different syntax for assignment to roles and

assignment to properties.

	Introduction
	Design
	Current context
	Assignment statements for roles
	Remove
	CreateRole
	Move
	Delete
	Bind
	Bind_
	Unbind
	Unbind_
	‘missing’ statement types: add and set

	Creating contexts
	Create context
	Create context_

	Assignment statements for properties
	The object of the perspective
	Operators
	=, =+, =-
	Delete

	Why there is different syntax for properties and roles

