
Aspects and role filling
Joop Ringelberg 02-02-22 Version: 1

Introduction

In this text we explore the consequences of the introduction of Aspect Roles for the role

filling relation.

An Aspect Role is one that is taken, in design time, from one context and added to

another. As an example, think of a generic role Driver that can be added to various types

of transport, e.g. a transport of ill persons to hospitals (PatientTransport) and ordinary

taxi rides (PrivateTransport). Instances of such roles will be stored with their ‘host’

context type, e.g. a PatientTransport instance, indexed by their original, fully qualified

name. So, supposing Driver is a role of the generic Ride context, a PatientTransport

context instance would have Ride$Driver instances. In contrast, a Patient role modelled on

PatientTransport would have instances typed by PatientTransport$Patient.

The takeaway is that a role type may be used in many contexts. This is important when it

comes to queries, which after all are nothing but descriptions of paths through the web of

Context and Role instances, expressed in terms of types.

An example will make this clear. Suppose a Taxi company wants to compile a list of

Patients driven by a particular Employee. A query like this would seem to do the job:

Employee >> fills Driver >> context >> Patient

However, the compiler should say no to this query! Why? Because Driver is a role in the

context of the generic Ride context and that context has no Patient role. Instead, we

should express the query like this:

Employee >> fills Driver in PatientTransport >> context >> Patient

This underlines the fact that Driver as such does not identify a role type; we must combine

it with a context type. Let me hasten to add that we will interpret ‘Driver’ as meaning:

the role Driver in its syntactical context, i.e. Ride. Let’s introduce a Purescript data type

for this combination:

newtype RoleInContext = RoleInContext {context :: ContextType, role ::

EnumeratedRoleType}

Representation of Queries

We represent queries with a QueryFunctionDescription that gives us the domain, range,

function, and some meta-properties and the argument expressions that supply values to be

bound to function parameters. Domain and range are constructed as an Abstract Data Type

(ADT) of a base type and role domains are based on EnumeratedRoleTypes. This we need

2

to change to RoleInContext, because a path through type-space is not along context- and

role types; it is along context types and roles in a particular context – not necessarily their

lexical context!

Additions to the language

As the example in the previous paragraph illustrated, we need new constructs in our

language. We need an extra qualification when describing what we fill a role with. We

also need to be able to say what context we end up in when we traverse the fills relation.

There is only one more way for a query to end up in a role, and that is when we move

from a context to a role. The context type is obvious in that case1.

FilledBy in role definition

First of all, we should be able to define a role type’s filler in terms of the combination of

another role type and a context:

user Attendant filledBy Driver in PatientTransport

Extending our example, suppose the hospital requires the person delivering a patient to

register as Attendant, we see we cannot do with just Driver, but need to extend that to

Driver in PatientTransport. Again, when no context type is given, the system

interprets this as that the syntactically embedding context of the role type is meant.

Fills (in queries)

Secondly, we need to be able to qualify a role with a context type in queries when using

the fills keyword:

Employee >> fills Driver in PatientTransport >> context >> Patient

FilledBy (in queries)

Finally, we can qualify the role with a context when traversing the fills relation in the

other direction:

User >> filledBy Driver in PatientTransport

Compiling these expressions to QueryFunctionDescriptions

How do we construct the RoleInContext structures in the domains and ranges of the

query function descriptions for the steps that take us to a role instance?

1 However, when moving from context type C to role type A, we should check whether A is
available in C. It will be when A is in the namespace C; and it will be when C has A’s context as
Aspect.

3

Role step

The RoleInContext that must be the range of the role step is conceptually easy: it is just

the combination of the ContextType that is the domain of the step, combined with the

EnumeratedRoleType that is its range.

However, in compile time the domain is an Abstract Data Type (ADT) constructed from

ContextType’s. We construct the ADT RoleInContext from it by traversing the ADT

ContextType with a function

ContextType -> RoleInContext

that tacks on the EnumeratedRoleType onto each ContextType.

Fills step

	Introduction
	Representation of Queries
	Additions to the language
	FilledBy in role definition
	Fills (in queries)
	FilledBy (in queries)

	Compiling these expressions to QueryFunctionDescriptions
	Role step
	Fills step

