
Abstract Data Type
Joop Ringelberg 24-01-20 Version: 1

Introduction

There are three use cases that underline the need for abstract data types to reason about

roles, contexts and properties. Without explaining the concept, we’ll give these three

cases to build some intuition.

The binding of a Role can be a set of alternatives1. We call such a set a Sum of types.

Alternatively, we can stipulate that a Role must be bound to multiple other instances at

the same time and that we call a Product of types.

The query language supports concatenating two queries. This means we can create a set

of role instances of two or more types. The type of such a set is a Sum type, too. In a

sense we create a new type of role in this way, just like an Enumerated Role with multiple

alternative bindings (but in a query we construct it on the fly and we do not add own

properties, or aspect roles).

An EnumeratedRole is described by giving it aspects and a binding. If we reason about

roles and their relations, it is convenient to lump these three facets together in a single

Product type. The role itself (as a set of Property types), its aspects and its binding form a

Product.

In the text Semantics Of The Perspectives Language we have explained these issues in

more detail. In this text we describe the representation of such compound types and the

functions we have for manipulating them.

Representation

We represent compound types with an Abstract Data Type, or ADT for short:

data ADT a =

 ST a |

 SUM (Array (ADT a)) |

 PROD (Array (ADT a)) |

 EMPTY |

 UNIVERSAL

1 We’re talking type level here, so a Role is a type, its binding is a requirement on actual bound
instances.

2

ST stands for Single Type or Simple Type. When we describe roles, the parameter a is

bound to a RoleType.2 Empty and Universal are edge cases of, respectively, a role without

properties and a role with all properties. The former we use to specify that no restrictions

hold, on binding a role; the latter says that nothing can bind to a role3. In the syntax we

use the keyword NoBinding.

Ordering and type specificity

The compiler checks the validity of bind assignment statements. Such a statement, in the

right hand side of a rule, is the intention of a user to have his bot make an assignment if

the conditions are right. But is this binding allowed? Obviously, when the type of the

required binding equals that of the binding, the answer is yes. But we should allow the

binding, too, when the type of the required binding is less specific than that of the

binding.

In Semantics Of The Perspectives Language we have defined specificity as the relation

between the property sets of Roles: Role X is less specific than Role Y if X’s properties are

a subset of Y’s properties (less specific = isSubset over property-set)

Property Sets

Specificity is defined in terms of the Property sets of Roles. This means that we must have

a way to compute the Property set of an ADT. Here is an algorithm:

1. For an ST ENR EnumeratedRoleType just take the role’s own properties.

2. For an ST CR CalculatedRoleType, retrieve the calculation of the role and

compute the property set of (the ADT in) its range.

3. For a Sum type, form the intersection of the properties of the terms. If one of the

terms is Empty, the intersection is Empty. Ignore Universal.

4. For a Product type, take the union. If one of the terms is Universal, the union is

Universal. Ignore Empty.

 Because we have to handle Empty and Universal, we cannot represent a Property set

merely by an Array or a List. Hence we define the following type:

Data PropertySet = Universal | Empty | PSet (Array PropertyType)

Other sets: views and aspects

What are the Aspects of an ADT? This is a relevant question for a modeller. Each

EnumeratedRole can have Aspects, much like it can have properties. Hence, we can re-use

2 Not just EnumeratedRoles, e may want to bind to a CalculatedRole. Consider the case where you
want to restrict a binding to grown up participants (bind to a filtered role). Or to parents (Sum of
Father and Mother).
3 Because all properties include the property without values and no role instance can have a value
for that.

3

the algorithm we used for computing a PropertySet for computing the set of Aspects of

an ADT.

For Views, the situation is slightly different. We handle ST and Product just like with

properties, but the Views of a Sum is not just the intersection of the Views of its terms.

Rather, we have to compute the PropertySet of the Sum and then use it to filter each

View in the union of the view set per term. This is because we have only use for a View if

the role it is applied to, has all the properties it wants.

Functions on ADT’s

The Description Compiler translates the Abstract Syntax Tree that results from parsing a

Query into a description of a function that, in its turn, can be translated into a function

that actually runs the Query. While doing so, the Description Compiler checks whether the

result of applying a query step is suitable as input for the next step. That is, it compares

the range of a step with the required domain of the next step.

It therefore must be able to determine the range of a querystep, given the domain that is

supplied to it, and the type of the function that is applied.

To make this less abstract, consider the query step type binding. Given a particular Role,

what is the binding of that role? This is easy; we just look it up in the Role’s definition.

But what if we then again take the binding of the result? Then we have to compute the

binding of an ADT, because binding types are represented as ADT’s. In this chapter we

explain how the five relevant functions work out for the various ADT type constructors.

The functions are: from context to role and vice versa; from role to binding and vice

versa; and from role to property.

RoleX: From Context to Role

The simple case is ST ContextType. To take a particular role of such an ADT simply yields

that Role type: ST RoleType.

If the modeller wants to take the role from Empty we have to throw an error. After all,

Empty here means a Context without roles.

By similar reasoning, taking a role from Universal succeeds and yields the same result as

with ST ContextType. However, notice that this would only work if the Role type has

been specified completely by the modeller4.

4 But in reality this case will never arise. To see why, we must ask ourselves under what
circumstances the Description Compiler would have to handle a domain of Universal. Universal is
only introduced by the modeler as a requirement on role binding. He thereby specifies that that
role can never be bound. So Universal is the range of the function binding, when applied to such a
role. But, by definition, if the modeler does so, we signal an error. So no function will ever return
Universal; and so the Description Compiler will never meet Universal as domain.

4

A role from a Product succeeds if the role is in the union of the roles of the terms of the

Product. But what if there are multiple roles in that union that match a local role name?

Then we can return a Product of those roles.

A role from a Sum of Contexts only succeeds if the role is in the intersection of the roles

of the terms. Notice that this is only meaningful for local role names: each Context in the

Sum must have a Role with that local name. Again, if multiple roles match a local role

name, we return a Product of those roles.

Context: From Role to Context

The simple case (ST RoleType) is obvious.

For Empty, we return Empty. This is because we know nothing about the Empty role. To

make this concrete: suppose no binding requirements have been set for a Role. We are

allowed to take its binding, but from then on we are ‘off the chart’. Any role might be

bound to such a Role, so any context can be the result of taking the context of its binding.

And the only thing we know about every context type is that it is a subtype of Empty.

For Universal it can only work for fully qualified role types (but we have seen that the

case will never arise).

What is the context of a Product of Roles? It is the Product of each Role’s context and that

can be considered to be a ‘super-context’, holding all roles of the terms.

What is the context of a Sum of Roles? Again, it is just the Sum of Contexts.

Binding: From a Role to its binding

We find the binding of ST ENR EnumeratedRoleType simply by looking it up in the

definition of the EnumeratedRole. For a CalculatedRole, we look up its calculation and

take the binding of the ADT that is in its range5.

binding applied to Universal is simple, as the modeller uses Universal to stipulate that no

binding is allowed. Hence, the modeller should not take the binding of Universal, so we

throw an error.

Similarly, binding applied to Empty just results in Empty. Anything goes.

For Sums and Products, we construct the Sum of the bindings and the Product of the

bindings, respectively.

A word on normalisation. There is no need to create a normal form of an ADT (e.g.

Conjunctive Normal Form), though we could. However, if, on creating a Sum or Product,

5 This range must be of the form: RDOM (ADT RoleType).

5

we detect Empty or Universal among its terms, it is advisable to normalise the result6.

Thereby we avoid unnecessary work later.

BinderX: from a role to its binders

The function binder takes an argument that identifies a role type. The Description

Compiler checks if this is a legal move by looking up the required binding in the definition

of that EnumeratedRole or CalculatedRole. The domain of the binder function (the

assumed binding, an ADT RoleType) must be equal to or more specific than the required

binding.

It is important to understand that we never try to compute the binder of an arbitrary ADT.

That has no meaning.

Notice, however, that the ADT that results from the function binder is always of the form

ST ENR EnumeratedRoletype. This is because only enumerated roles can bind other

roles.

PropertyX: from a role to a property value

We can think of Properties in abstract terms, too. But a Property has no sub-parts, as do

roles. Instead, a Property is characterised by its Range. However, we have also found7 that

we cannot ignore the Property name itself. It is the carrier of semantics we cannot afford

to lose. Hence we have the Description Compiler handle abstract descriptions of

Properties in terms of

• Its name, and

• Its range.

We can have abstract data types constructed from these pairs.

The Description Compiler constructs descriptions of functions on Property values. For

example, it may construct a function that adds the values of two properties, or counts the

number of values. It guards the compatibility of these functions with the ADT’s that

describe the properties.

So how do we construct an ADT if we take the property value of an arbitrary ADT

RoleType?

The simple case is ST ENR EnumeratedRoleType. We find the ADT of the results of the

property-taking function by looking up the range in the definition of

EnumeratedRoleType.

6 A Product with Universal is just Universal; we can leave out Universal from Sums. We can leave
out Empty from Products, and a Sum holding Empty is just Empty.
7 Not explained in this tekst.

6

For an ST CR CalculatedRoleType we take the range of the calculation and work from

there (i.e. compute the ADT of that ADT RoleType).

Taking a property of Empty should result in an error. The empty role has no properties.

Taking a property of Universal should be allowed, as the Universal role has all properties.

On the other hand, this case will never occur. The modeller uses Universal to stipulate

that no binding can exist for a particular Role. Taking the binding of such a Role results in

an error. Hence we can never arrive in the situation that Universal is the domain of a

function.

Taking the property of a Sum of roles succeeds only if the property is in the PropertySet of

that Sum. If multiple Role types have names that match with a local property name, the

result will be a Product of those properties.

Similarly, taking the property of a Product of roles succeeds only if the property is in the

PropertySet of that Product. Again, if multiple Role types in that set match the local name

of a property, we combine those properties in a Product.

	Introduction
	Representation
	Ordering and type specificity
	Property Sets
	Other sets: views and aspects
	Functions on ADT’s
	RoleX: From Context to Role
	Context: From Role to Context
	Binding: From a Role to its binding
	BinderX: from a role to its binders
	PropertyX: from a role to a property value

